Palladium on Nitrogen-Doped Mesoporous Carbon: A Bifunctional Catalyst for Formate-Based, Carbon-Neutral Hydrogen Storage.

ChemSusChem

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.

Published: February 2016

The lack of safe, efficient, and economical hydrogen storage technologies is a hindrance to the realization of the hydrogen economy. Reported herein is a reversible formate-based carbon-neutral hydrogen storage system that is established over a novel catalyst comprising palladium nanoparticles supported on nitrogen-doped mesoporous carbon. The support was fabricated by a hard template method and nitridated under a flow of ammonia. Detailed analyses demonstrate that this bicarbonate/formate redox equilibrium is promoted by the cooperative role of the doped nitrogen functionalities and the well-dispersed, electron-enriched palladium nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201501376DOI Listing

Publication Analysis

Top Keywords

hydrogen storage
12
nitrogen-doped mesoporous
8
mesoporous carbon
8
formate-based carbon-neutral
8
carbon-neutral hydrogen
8
palladium nanoparticles
8
palladium nitrogen-doped
4
carbon bifunctional
4
bifunctional catalyst
4
catalyst formate-based
4

Similar Publications

Electrochemical water splitting is a promising method for generating green hydrogen gas, offering a sustainable approach to addressing global energy challenges. However, the sluggish kinetics of the anodic oxygen evolution reaction (OER) poses a great obstacle to its practical application. Recently, increasing attention has been focused on introducing various external stimuli to modify the OER process.

View Article and Find Full Text PDF

Organic compounds present promising options for sustainable zinc battery electrodes. Nevertheless, the electrochemical properties of current organic electrodes still lag behind those of their inorganic counterparts. In this study, nitro groups were incorporated into pyrene-4, 5, 9, 10-tetraone (PTO), resulting in an elevated discharge voltage due to their strong electron-withdrawing capabilities.

View Article and Find Full Text PDF

Gas leak detection is one of the most vital issues in the mining and energy industries. Despite many highly specific and sensitive laser-based spectroscopic systems available on the market, the universal optical gas leak detector is still unattainable. In this paper we demonstrate the laser gas sensing setup capable of indirect detection of virtually any gas leaks using differential optical dispersion spectroscopy of oxygen near 761 nm.

View Article and Find Full Text PDF

New approaches to achieve facile and reversible dihydrogen activation are of importance for synthesis, catalysis, and hydrogen storage. Here we show that low-coordinate magnesium oxide complexes [{(nacnac)Mg}(μ-O)] , with nacnac = HC(RCNDip), Dip = 2,6-PrCH, R = Me (), Et (), Pr (), readily react with dihydrogen under mild conditions to afford mixed hydride-hydroxide complexes [{(nacnac)Mg}(μ-H)(μ-OH)] . Dehydrogenation of complexes is strongly dependent on remote ligand substitution and can be achieved by simple vacuum-degassing of (R = Pr) to regain .

View Article and Find Full Text PDF

Sodium bisulfite boosted exopolysaccharide production by Auxenochlorella protothecoides: Potential mechanisms harnessing HO signaling and carbon reallocation.

Bioresour Technol

January 2025

Department of Food Science and Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105 China. Electronic address:

Microalgal exopolysaccharides (EPS) possess significant functional benefits across various industrial sectors, but their commercial feasibility is constrained by inefficient synthesis and poorly understood synthesis mechanisms. This study found that 1.25 mmol/L sodium bisulfite promoted EPS accumulation to 224.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!