AI Article Synopsis

Article Abstract

We present the development and testing of superficial neuromast-inspired flow sensors that also attain high sensitivity and resolution through a biomimetic hyaulronic acid-based hydrogel cupula dressing. The inspiration comes from the spatially distributed neuromasts of the blind cavefish that live in completely dark undersea caves; the sensors enable the fish to form three-dimensional flow and object maps, enabling them to maneuver efficiently in cluttered environments. A canopy shaped electrospun nanofibril scaffold, inspired by the cupular fibrils, assists the drop-casting process allowing the formation of a prolate spheroid-shaped artificial cupula. Rheological and nanoindentation characterizations showed that the Young's modulus of the artificial cupula closely matches the biological cupula (10-100 Pa). A comparative experimental study conducted to evaluate the sensitivities of the naked hair cell sensor and the cupula-dressed sensor in sensing steady-state flows demonstrated a sensitivity enhancement by 3.5-5 times due to the presence of hydrogel cupula. The novel strategies of sensor development presented in this report are applicable to the design and fabrication of other biomimetic sensors as well. The developed sensors can be used in the navigation and maneuvering of underwater robots, but can also find applications in biomedical and microfluidic devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4725914PMC
http://dx.doi.org/10.1038/srep19336DOI Listing

Publication Analysis

Top Keywords

nanofibril scaffold
8
hydrogel cupula
8
artificial cupula
8
cupula
5
scaffold assisted
4
assisted mems
4
mems artificial
4
artificial hydrogel
4
hydrogel neuromasts
4
neuromasts enhanced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!