Characterization of the First α-(1→3) Branching Sucrases of the GH70 Family.

J Biol Chem

From the Université de Toulouse, Institut National des Sciences Appliquées (INSA), Université Paul Sabatié (UPS), Institut National Polytechnique (INP), Laboratoire d'Ingénieries des Systèmes Biologiques et des Procédés (LISBP), 135 Avenue de Rangueil, F-31077 Toulouse, France, CNRS, UMR5504, F-31400 Toulouse, France, and Institut National de la Recherche Agronomique (INRA), UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-3140 Toulouse, France

Published: April 2016

Leuconostoc citreumNRRL B-742 has been known for years to produce a highly α-(1→3)-branched dextran for which the synthesis had never been elucidated. In this work a gene coding for a putative α-transglucosylase of the GH70 family was identified in the reported genome of this bacteria and functionally characterized. From sucrose alone, the corresponding recombinant protein, named BRS-B, mainly catalyzed sucrose hydrolysis and leucrose synthesis. However, in the presence of sucrose and a dextran acceptor, the enzyme efficiently transferred the glucosyl residue from sucrose to linear α-(1→6) dextrans through the specific formation of α-(1→3) linkages. To date, BRS-B is the first reported α-(1→3) branching sucrase. Using a suitable sucrose/dextran ratio, a comb-like dextran with 50% of α-(1→3) branching was synthesized, suggesting that BRS-B is likely involved in the comb-like dextran produced byL. citreumNRRL B-742. In addition, data mining based on the search for specific sequence motifs allowed the identification of two genes putatively coding for branching sucrases in the genome ofLeuconostoc fallaxKCTC3537 andLactobacillus kunkeeiEFB6. Biochemical characterization of the corresponding recombinant enzymes confirmed their branching specificity, revealing that branching sucrases are not only found inL. citreumspecies. According to phylogenetic analyses, these enzymes are proposed to constitute a new subgroup of the GH70 family.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4817194PMC
http://dx.doi.org/10.1074/jbc.M115.688044DOI Listing

Publication Analysis

Top Keywords

α-1→3 branching
12
branching sucrases
12
gh70 family
12
citreumnrrl b-742
8
corresponding recombinant
8
comb-like dextran
8
branching
6
characterization α-1→3
4
sucrases gh70
4
family leuconostoc
4

Similar Publications

Recent studies have suggested that the interaction between diet and an individual's genetic predisposition can determine the likelihood of obesity and various metabolic disorders. The current study aimed to examine the association of dietary branched-chain amino acids(BCAAs) and aromatic amino acids(AAAs) with the expression of the leptin and FTO genes in the visceral and subcutaneous adipose tissues of individuals undergoing surgery. This cross-sectional study was conducted on 136 Iranian adults, both men and women, aged ≥18 years.

View Article and Find Full Text PDF

Purpose: Nano-drug delivery systems (NDDS) have become a promising alternative and adjunctive strategy for lung cancer (LC) treatment. However, comprehensive bibliometric analyses examining global research efforts on NDDS in LC are scarce. This study aims to fill this gap by identifying key research trends, emerging hotspots, and collaboration networks within the field of NDDS and LC.

View Article and Find Full Text PDF

Mosses and lichens are often used to assess atmospheric deposition of Pb. The most widely used method for determining this isotope is gamma spectrometric analysis. There is often a need to enhance the sensitivity of the method, which can be achieved by pre-concentrating Pb.

View Article and Find Full Text PDF

Didemnins, a class of cyclic depsipeptides derived from marine organisms exhibit notable anticancer properties. Among them, Didemnin B has been extensively researched for its strong antitumor activity and progression to clinical trials. Nonetheless, its clinical application has been impeded by challenges like poor bioavailability and dose-limiting toxicity.

View Article and Find Full Text PDF

Anatomical Characterization of the Motor Branch to the Fourth Lumbrical: A Cadaver Study.

J Hand Surg Am

January 2025

Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Florida, Gainesville, FL.

Purpose: The branching pattern of the deep motor branch of the ulnar nerve (DBUN) in the hand is complex. The anatomy of the motor branch innervating the fourth lumbrical (4L), where paralysis results in a claw hand deformity after ulnar nerve injury, is not well defined. This cadaver study focused on mapping and defining anatomical landmarks in relation to the motor branch to the 4L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!