This work reports the effect of silver bionanoparticles (Bio(AgNPs) synthesized by Actinobacteria CGG 11n on selected Gram (+) and Gram (-) bacteria. Flow cytometry, classical antibiogram method and fluorescent microscopy approach was used for evaluation of antimicrobial activity of Bio(AgNPs) and their combination with antibiotics. Furthermore, the performed research specified the capacity of flow cytometry method as an alternative to the standard ones and as a complementary method to electromigration techniques. The study showed antibacterial activity of both BioAgNPs and the combination of antibiotics/BioAgNPs against all the tested bacteria strains in comparison with a diffusion, dilution and bioautographic methods. The synergistic effect of antibiotics/BioAgNPs combination (e.g. kanamycin, ampicillin, neomycin and streptomycin) was found to be more notable against Pseudomonas aeruginosa representing a prototype of multi-drug resistant "superbugs" for which effective therapeutic options are very limited.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201500507DOI Listing

Publication Analysis

Top Keywords

flow cytometry
12
activity bioagnps
8
bioagnps combination
8
antimicrobial properties
4
properties biosynthesized
4
biosynthesized silver
4
silver nanoparticles
4
nanoparticles studied
4
studied flow
4
cytometry techniques
4

Similar Publications

Identifying cellular and molecular mechanisms maintaining HIV-1 latency in the viral reservoir is crucial for devising effective cure strategies. Here we developed an innovative flow cytometry-fluorescent in situ hybridization (flow-FISH) approach for direct ex vivo reservoir detection without the need for reactivation using a combination of probes detecting abortive and elongated HIV-1 transcripts. Our flow-FISH assay distinguished between HIV-1-infected CD4+ T cells expressing abortive or elongated HIV-1 transcripts in PBMC from untreated and ART-treated PWH from the Amsterdam Cohort Studies.

View Article and Find Full Text PDF

Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by reduced platelet levels and heightened susceptibility to bleeding resulting from augmented autologous platelet destruction and diminished thrombopoiesis. Although antibody-mediated autoimmune reactions are widely recognized as primary factors, the precise etiological agents that trigger ITP remain unidentified. The pathogenesis of ITP remains unclear owing to the absence of comprehensive high-throughput data, except for the belated emergence of autoreactive antibodies.

View Article and Find Full Text PDF

Diffraction imaging of cells allows rapid phenotyping by the response of intracellular molecules to coherent illumination. However, its ability to distinguish numerous types of human leukocytes remains to be investigated. Here, we show that accurate classification of three lymphocyte subtypes can be achieved with features extracted from cross-polarized diffraction image (p-DI) pairs.

View Article and Find Full Text PDF

Esophageal carcinoma is a highly prevalent malignancy worldwide. The present study aimed to investigate the mechanism by which the natural compound coptisine affects pyroptosis in esophageal squamous cell carcinoma (ESCC). The expression of c-Met in ESCC patients was assessed by immunohistochemical analysis of tissue microarrays.

View Article and Find Full Text PDF

Purpose: Dry eye disease (DED) is a common ocular surface inflammatory disease with a complex pathogenesis. Herein, the role and effect of gasdermin E (GSDME) in DED pathogenesis were explored.

Methods: In vitro, flow cytometry, Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) release assays were used to determine the effects of hyperosmotic stress on pyroptosis, apoptosis, and cell viability in human corneal epithelial cells (HCECs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!