Gaps with single-nanometer dimensions (<10 nm) between metallic nanostructures enable giant local field enhancements for surface enhanced Raman scattering (SERS). Monolayer graphene is an ideal candidate to obtain a sub-nanometer gap between plasmonic nanostructures. In this work, we demonstrate a simple method to achieve a sub-nanometer gap by dewetting a gold film supported on monolayer graphene grown on copper foil. The Cu foil can serve as a low-loss plasmonically active metallic film that supports the imaginary charge oscillations, while the graphene can not only create a stable sub-nanometer gap for massive plasmonic field enhancements but also serve as a chemical enhancer. We obtained higher SERS enhancements in this graphene-gapped configuration compared to those in Au nanoparticles on Cu film or on graphene-SiO2-Si. Also, the Raman signals measured maintained their fine features and intensities over a long time period, indicating the stability of this Au-graphene-Cu hybrid configuration as an SERS substrate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/27/7/075201 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!