AI Article Synopsis

  • Blueberries contain pterostilbene (PS), which may help prevent inflammation and oxidative stress in eye cells, particularly under hyperosmotic conditions.
  • In experiments, PS reduced the expression of inflammatory proteins and decreased harmful reactive oxygen species in human corneal epithelial cells exposed to high osmotic pressure.
  • PS also balanced the activity of pro-inflammatory and antioxidant systems, suggesting it could offer protective benefits for conditions like dry eye.

Article Abstract

Blueberries have been recognized to possess protective properties from inflammation and various diseases, but not for eye and ocular disorders. This study explores potential benefits of pterostilbene (PS), a natural component of blueberries, in preventing ocular surface inflammation using an in vitro culture model of human corneal epithelial cells (HCECs) exposed to hyperosmotic medium at 450 mOsM. Gene expression was detected by RT-qPCR, and protein production or activity was determined by ELISA, zymography, Western blotting and immunofluorescent staining. Reactive oxygen species (ROS) production was measured using DCFDA kit. The addition of PS significantly reduced the expression of pro-inflammatory mediators, TNF-α, IL-1 β, IL-6, MMP-2 and MMP-9 in HCECs exposed to hyperosmotic medium. Pre-treatment with PS (5 to 20 μM) suppressed ROS overproduction in a dose-dependent manner. Additionally, PS significantly decreased the levels of oxidative damage biomarkers, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), aconitase-2 and 8-hydroxydeoxyguanosine (8-OHdG). Importantly, PS was found to rebalance homeostasis between oxygenases and anti-oxidative enzymes by decreasing cyclooxygenase 2 (COX2) expression and restoring the activity of antioxidant enzymes, superoxide dismutase 1 (SOD1) and peroxiredoxin-4 (PRDX4) during hyperosmotic stress. Our findings demonstrate that PS protects human cornea from hyperosmolarity-induced inflammation and oxidative stress, suggesting protective effects of PS on dry eye.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4725955PMC
http://dx.doi.org/10.1038/srep19408DOI Listing

Publication Analysis

Top Keywords

corneal epithelial
8
epithelial cells
8
hcecs exposed
8
exposed hyperosmotic
8
hyperosmotic medium
8
blueberry component
4
component pterostilbene
4
pterostilbene protects
4
protects corneal
4
inflammation
4

Similar Publications

Purpose: To describe a rare case of infectious keratitis secondary to Brevundimonas diminuta, a gram-negative bacillus with fluoroquinolone resistance and rare clinical isolation.

Methods: A 50-year-old man with contact lens overuse presented with a large corneal ulcer and hand motion visual acuity. Initial treatment with fortified topical tobramycin and vancomycin yielded slow improvement, and initial culture grew Staphylococcus epidermidis, Staphylococcus hominis, and Corynebacterium bovis.

View Article and Find Full Text PDF

Purpose: The corneal epithelium is the outermost layer of the cornea. It plays a vital role in both normal and pathological conditions of the eye surface and serves as a protective layer. This study aimed to evaluate corneal epithelial thickness (ET) and create a normative database of corneal ET for pediatric and adult age groups using MS-39 AS-OCT.

View Article and Find Full Text PDF

Reproducing the microstructure of the natural cornea remains a significant challenge in achieving the mechanical and biological functionality of artificial corneas. Therefore, the development of cascade structures that mimic the natural extracellular matrix (ECM), achieving both macro-stability and micro-structure, is of critical importance. This study proposes a novel, efficient, and general photo-functionalization strategy for modifying natural biomaterials.

View Article and Find Full Text PDF

Purpose: To retrospectively describe the performance of topical insulin in persistent corneal epithelial defects (CED) and persistent corneal ulcers.

Methods: We reviewed cases of patients treated for persistent CED and persistent corneal ulcers using topical insulin in a concentration of 25 IU per milliliter three times per day. The closure rate of CED and corneal ulcers was the main outcome measure.

View Article and Find Full Text PDF

COVID-19, caused by SARS-CoV-2, has presented formidable challenges to global health since its emergence in late 2019. While primarily known for respiratory symptoms, it can also affect the ocular surface. This review summarizes the effects of SARS-CoV-2 on ocular surface immunity and inflammation, focusing on infection mechanisms, immune responses, and clinical manifestations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!