The synthesis of high quality protein crystals is essential for determining their structure. Hence the development of strategies to facilitate the nucleation of protein crystals is of prime importance. Recently, Ghatak and Ghatak [Langmuir 2013, 29, 4373] reported heterogeneous nucleation of protein crystals on nano-wrinkled surfaces. Through a series of experiments on different proteins, they were able to obtain high quality protein crystals even at low protein concentrations and sometimes without the addition of a precipitant. In this study, the mechanism of protein crystal nucleation on nano-wrinkled surfaces is studied through Monte Carlo simulations. The wrinkled surface is modeled by a sinusoidal surface. Free-energy barriers for heterogeneous crystal nucleation on flat and wrinkled surfaces are computed and compared. The study reveals that the enhancement of nucleation is closely related to the two step nucleation process seen during protein crystallization. There is an enhancement of protein concentration near the trough of the sinusoidal surface which aids in nucleation. However, the high curvature at the trough acts as a deterrent to crystal nucleus formation. Hence, significant lowering of the free-energy barrier is seen only if the increase in the protein concentration at the trough is very high.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5fd00119f | DOI Listing |
Chem Biol Drug Des
January 2025
Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA.
A new series of 13 ritonavir-like inhibitors of human drug-metabolizing CYP3A4 was rationally designed to study the R side-group and R end-group interplay when the R side-group is represented by phenyl. Spectral, functional, and structural characterization showed no improvement in the binding affinity and inhibitory potency of R/R-phenyl inhibitors upon elongation and/or fluorination of R-Boc (tert-butyloxycarbonyl) or its replacement with benzenesulfonyl. When R is pyridine, the impact of R-phenyl-to-indole/naphthalene substitution was multidirectional and highly dependent on side-group stereo configuration.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
KU Leuven: Katholieke Universiteit Leuven, Chemistry, BELGIUM.
Understanding the impact of oxidative modification on protein structure and functions is essential for developing therapeutic strategies to combat macromolecular damage and cell death. However, selectively inducing oxidative modifications in proteins remains challenging. Herein we demonstrate that [V6O13{(OCH2)3CCH2OH}2]2- (V6-OH) hybrid metal-oxo cluster can be used for selective protein oxidative cleavage and modifications.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sree Chitra Tirunal Institute for Medical Sciences and Technology, Bioceramics Division, Biomedical Technology Wing, 695011, Thiruvananthapuram, INDIA.
A collagen-inspired helical protein-mimic has been synthesized via topochemical polymerization of a designed tripeptide monomer. In the monomer crystal, molecules arrange in a head-to-tail manner, forming supramolecular helices. The azide and alkyne of adjacent molecules in the supramolecular helix are proximally preorganized in a ready-to-react arrangement.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
This perpective delves into the emerging field of matere bonds, a novel type of noncovalent interaction involving group 7 elements such as manganese, technetium, and rhenium. Matere bonds, a new member of the σ-hole family where metal atoms act as electron acceptors, have been shown experimentally and theoretically to play significant roles in the self-assembly and stabilization of supramolecular structures both in solid-state and solution-phase environments. This perspective article explores the physical nature of these interactions, emphasizing their directionality and structural influence in various supramolecular architectures.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
In this work, coixalkyne A (), a natural polynuclear calcium complex with a novel cross-shaped molecular architecture, was isolated from L. along with the undescribed analogue coixalkyne B (). Their structures were identified by means of NMR spectroscopy, ECD calculations, and single-crystal X-ray diffraction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!