Bundles of polymer filaments are responsible for the rich and unique mechanical behaviors of many biomaterials, including cells and extracellular matrices. In fibrin biopolymers, whose nonlinear elastic properties are crucial for normal blood clotting, protofibrils self-assemble and bundle to form networks of semiflexible fibers. Here we show that the extraordinary strain-stiffening response of fibrin networks is a direct reflection of the hierarchical architecture of the fibrin fibers. We measure the rheology of networks of unbundled protofibrils and find excellent agreement with an affine model of extensible wormlike polymers. By direct comparison with these data, we show that physiological fibrin networks composed of thick fibers can be modeled as networks of tight protofibril bundles. We demonstrate that the tightness of coupling between protofibrils in the fibers can be tuned by the degree of enzymatic intermolecular crosslinking by the coagulation factor XIII. Furthermore, at high stress, the protofibrils contribute independently to the network elasticity, which may reflect a decoupling of the tight bundle structure. The hierarchical architecture of fibrin fibers can thus account for the nonlinearity and enormous elastic resilience characteristic of blood clots.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5sm01992c | DOI Listing |
Gels
December 2024
Biointerface Laboratory, Helmholtz-Institut for Biomedical Engineering, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany.
Angiogenesis, the formation of new blood vessels, is a fundamental process in both physiological repair mechanisms and pathological conditions, including cancer and chronic inflammation. Hydrogels are commonly used as in vitro models to mimic the extracellular matrix (ECM) and support endothelial cell behavior during angiogenesis. Mesenchymal stem cells further augment cell and tissue growth and are therefore widely used in regenerative medicine.
View Article and Find Full Text PDFBiomater Adv
December 2024
Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, USA; Department of Biomedical Engineering, University of California, Davis, CA, USA. Electronic address:
Osteosarcoma (OS), the most common form of primary bone cancer in young adults, has had no improvements in clinical outcomes in 50 years. This highlights a critical need to advance mechanistic understanding of OS to further therapeutic discovery, which will only be possible with accurate models of the disease. Compared to traditional monolayer studies and preclinical models, in vitro models that better replicate the three-dimensional (3D) bone marrow microenvironment will facilitate methodical investigations of the events and factors that drive OS progression.
View Article and Find Full Text PDFPLoS Comput Biol
December 2024
Department of Mathematics and Statistics, University of Central Oklahoma, Edmond, Oklahoma, United States of America.
Fibrinolysis, the plasmin-mediated degradation of the fibrin mesh that stabilizes blood clots, is an important physiological process, and understanding mechanisms underlying lysis is critical for improved stroke treatment. Experimentalists are now able to study lysis on the scale of single fibrin fibers, but mathematical models of lysis continue to focus mostly on fibrin network degradation. Experiments have shown that while some degradation occurs along the length of a fiber, ultimately the fiber is cleaved at a single location.
View Article and Find Full Text PDFRegen Ther
March 2025
Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan.
Vascular interactions play a crucial role in embryogenesis, including skeletal development. During endochondral ossification, vascular networks are formed as mesenchymal cells condense and later invade skeletal elements to form the bone marrow. We and other groups developed a model of endochondral ossification by implanting human embryonic stem cell (hESC)-derived sclerotome into immunodeficient mice.
View Article and Find Full Text PDFThromb Haemost
December 2024
Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada.
Background: Neutrophil Extracellular Traps can contribute to thrombosis via stabilization fibrin network, which is normally conducted by plasma transglutaminase, Factor XIII-A as part of coagulation cascade. The possible presence and activity of FXIII-A in neutrophils or during NETosis is unknown. Here, we investigated potential presence of FXIII-A in neutrophils and participation in NET-fibrinogen interaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!