Phenylethanolamine N-methyltransferase (PNMT) is the terminal enzyme in the catecholamine biosynthetic pathway responsible for adrenaline biosynthesis. Adrenaline is involved in the sympathetic control of blood pressure; it augments cardiac function by increasing stroke volume and cardiac output. Genetic mapping studies have linked the PNMT gene to hypertension. This study examined the expression of cardiac PNMT and changes in its transcriptional regulators in the spontaneously hypertensive (SHR) and wild type Wistar-Kyoto (WKY) rats. SHR exhibit elevated levels of corticosterone, and lower levels of the cytokine IL-1β, revealing systemic differences between SHR and WKY. PNMT mRNA was significantly increased in all chambers of the heart in the SHR, with the greatest increase in the right atrium. Transcriptional regulators of the PNMT promoter show elevated expression of Egr-1, Sp1, AP-2, and GR mRNA in all chambers of the SHR heart, while protein levels of Sp1, Egr-1, and GR were elevated only in the right atrium. Interestingly, only AP-2 protein-DNA binding was increased, suggesting it may be a key regulator of cardiac PNMT in SHR. This study provides the first insights into the molecular mechanisms involved in the dysregulation of cardiac PNMT in a genetic model of hypertension.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/cjpp-2015-0303 | DOI Listing |
Arch Razi Inst
October 2023
Department of Animal Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran.
Chronic heat stress affects numerous physiological and behavioral mechanisms. Epigenetic changes following prolonged cyclic heat stress, creating new opportunities for molecular biology research. One of these changes involves monoamines, such as serotonin, epinephrine, norepinephrine, dopamine, and their transmission.
View Article and Find Full Text PDFSci Rep
March 2024
Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Prague, Czech Republic.
Catecholamines norepinephrine and dopamine have been implicated in numerous physiological processes within the central nervous system. Emerging evidence has highlighted the importance of tightly regulated monoamine levels for placental functions and fetal development. However, the complexities of synthesis, release, and regulation of catecholamines in the fetoplacental unit have not been fully unraveled.
View Article and Find Full Text PDFPflugers Arch
January 2023
Centre for Discovery Brain Sciences, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh, EH8 9XD, UK.
We recently demonstrated that the hypoxic ventilatory response (HVR) is facilitated by the AMP-activated protein kinase (AMPK) in catecholaminergic neural networks that likely lie downstream of the carotid bodies within the caudal brainstem. Here, we further subcategorise the neurons involved, by cross-comparison of mice in which the genes encoding the AMPK-α1 (Prkaa1) and AMPK-α2 (Prkaa2) catalytic subunits were deleted in catecholaminergic (TH-Cre) or adrenergic (PNMT-Cre) neurons. As expected, the HVR was markedly attenuated in mice with AMPK-α1/α2 deletion in catecholaminergic neurons, but surprisingly was modestly augmented in mice with AMPK-α1/α2 deletion in adrenergic neurons when compared against a variety of controls (TH-Cre, PNMT-Cre, AMPK-α1/α2 floxed).
View Article and Find Full Text PDFFront Physiol
May 2022
Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Luzhou Medical College, Luzhou, China.
Biological tissues are naturally three-dimensional (3D) opaque structures, which poses a major challenge for the deep imaging of spatial distribution and localization of specific cell types in organs in biomedical research. Here we present a 3D heart imaging reconstruction approach by combining an improved heart tissue-clearing technique with high-resolution light-sheet fluorescence microscopy (LSFM). We have conducted a three-dimensional and multi-scale volumetric imaging of the ultra-thin planes of murine hearts for up to 2,000 images per heart in x-, y-, and z three directions.
View Article and Find Full Text PDFOpen Biol
August 2020
Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.
Diversity among highly specialized cells underlies the fundamental biology of complex multi-cellular organisms. One of the essential scientific questions in cardiac biology has been to define subpopulations within the heart. The heart parenchyma comprises specialized cardiomyocytes (CMs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!