Objective: Reuse of hemodialysis filters is a standard practice and the sterilizing chemical most often employed is peracetic acid. Before starting the dialysis session, filters and lines are checked for residual levels of peracetic acid by means of a non-quantitative colorimetric test that is visually interpreted. The objective of this study was to investigate a new quantitative spectrophotometric test for detection of peracetic acid residues.
Methods: Peracetic acid solutions were prepared in concentrations ranging from 0.01 to 10 ppm. A reagent (potassium-titanium oxide + sulfuric acid) was added to each sample in proportions varying from 0.08 to 2.00 drops/mL of solution. Optical densities were determined in a spectrophotometer using a 405-nm filter and subjected to visual qualitative test by different observers.
Results: A relation between peroxide concentrations and respective optical densities was observed and it was linear with R2 > 0.90 for all reagent/substrate proportions. The peak optical densities were obtained with the reagent/substrate ratio of 0.33 drops/mL, which was later standardized for all further experiments. Both qualitative and quantitative tests yielded a specificity of 100%. The quantitative test was more sensitive than the qualitative test and resulted in higher positive and negative predictive values. There was a difference between observers in the qualitative test and some samples with significant amounts of peroxide were not detected.
Conclusion: A quantitative spectrophotometric test may improve detection of residues of peracetic acid when compared to the standard visual qualitative test. This innovation may contribute to the development of safer standards for reuse of hemodialysis filters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/S1679-45082011GS1945 | DOI Listing |
GMS Hyg Infect Control
December 2024
Uzun Mehmet Chest and Work Diseases Hospital, Medical Microbiology Dept, Zonguldak, Turkey.
Background: The use of laryngeal masks (LM) has increased widely today, both in anesthesia and in emergency cases. LM are available as reusable and disposable. Although reuse of disposable LM is not recommended, they are reused again after decontamination with different methods in anesthesia units in some countries.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
Klebsiella pneumoniae is an opportunistic pathogen responsible for various infections in humans and animals. It is known for its resistance to multiple antibiotics, particularly through the production of Extended-Spectrum Beta-Lactamases (ESBLs), and its ability to form biofilms that further complicate treatment. This study aimed to isolate and identify K.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China.
Moderate preoxidation is feasible for odor-producing algae treatments, usually requiring trade-offs in algal removal and integrity maintenance. However, dosing oxidants may cause internal oxidative homeostasis imbalances and secondary odorous metabolite responses, adding new trade-offs for moderate treatments. Peracetic acid (PAA)/Fe processes are promising strategies in moderate treatments and thus were applied to examine how to achieve the following three trade-offs: good algal removal, no odorant increases and no releases.
View Article and Find Full Text PDFFood Res Int
January 2025
Department of Food Safety and Regulatory Science, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea. Electronic address:
Rotavirus (RV) causes severe gastroenteritis in infants and young children worldwide. Fresh produce has been reported as a source of RV infection during production and harvesting, leading to foodborne illness. Cases of contamination from contact surfaces have also been reported.
View Article and Find Full Text PDFThe sulfur-containing chemical warfare agents sulfur mustard HD and nerve agent VX are highly toxic and persistent in the environment. Therefore, their neutralisation requires harsh oxidation conditions, but also precise selectivity. Here we report the safe and effective detoxification of surrogates CEES and PhX by selective oxidation of the sulfur atom by generating peracetic acid from AcOEt and aq.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!