Based on the conceptualization that social desirable bias (SDB) is a discrete event resulting from an interaction between a scale's items, the testing situation, and the respondent's latent trait on a social desirability factor, we present a method that makes use of factor mixture models to identify which examinees are most likely to provide biased responses, which items elicit the most socially desirable responses, and which external variables predict SDB. Problems associated with the common use of correlation coefficients based on scales' total scores to diagnose SDB and partial correlations to correct for SDB are discussed. The method is demonstrated with an analysis of SDB in the Attitude toward Interprofessional Service-Learning scale with a sample of students from health-related fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00273171003680245 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!