Epithelial-to-mesenchymal transition (EMT) of retinal pigment epithelial cells is a crucial event in the onset of proliferative vitreoretinopathy (PVR), the most common reason for treatment failure in retinal detachment surgery. We studied alterations in the cell surface glycan expression profile upon EMT of RPE cells and focused on its relevance for the interaction with galectin-3 (Gal-3), a carbohydrate binding protein, which can inhibit attachment and spreading of human RPE cells in a dose- and carbohydrate-dependent manner, and thus bares the potential to counteract PVR-associated cellular events. Lectin blot analysis revealed that EMT of RPE cells in vitro confers a glycomic shift towards an abundance of Thomsen-Friedenreich antigen, poly-N-acetyllactosamine chains, and complex-type branched N-glycans. Using inhibitors of glycosylation we found that both, binding of Gal-3 to the RPE cell surface and Gal-3-mediated inhibition of RPE attachment and spreading, strongly depend on the interaction of Gal-3 with tri- or tetra-antennary complex type N-glycans and sialylation of glycans but not on complex-type O-glycans. Importantly, we found that β1,6 N-acetylglucosaminyltransferase V (Mgat5), the key enzyme catalyzing the synthesis of tetra- or tri-antennary complex type N-glycans, is increased upon EMT of RPE cells. Silencing of Mgat5 by siRNA and CRISPR-Cas9 genome editing resulted in reduced Gal-3 binding. We conclude from these data that binding of recombinant Gal-3 to the RPE cell surface and inhibitory effects on RPE attachment and spreading largely dependent on interaction with Mgat5 modified N-glycans, which are more abundant on dedifferentiated than on the healthy, native RPE cells. Based on these findings we hypothesize that EMT of RPE cells in vitro confers glycomic changes, which account for high affinity binding of recombinant Gal-3, particularly to the cell surface of myofibroblastic RPE. From a future perspective recombinant Gal-3 may disclose a therapeutic option allowing for selectively targeting RPE cells with pathogenic relevance for development of PVR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712018PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146887PLOS

Publication Analysis

Top Keywords

rpe cells
32
cell surface
16
emt rpe
16
rpe
13
cells vitro
12
vitro confers
12
attachment spreading
12
recombinant gal-3
12
cells
9
epithelial-to-mesenchymal transition
8

Similar Publications

Purpose: To investigate the effect of the SUMOylation inhibitor TAK981 on hydrogen peroxide (H2O2)-induced oxidative damage in human retinal pigment epithelial cells (ARPE-19) and its regulatory mechanism.

Methods: An oxidative damage model of ARPE-19 cells induced by H2O2 was established, and 1, 2, and 5 µM TAK981 solutions were administered for intervention respectively. Normal cells were used as the control group.

View Article and Find Full Text PDF

Non-canonical roles of CFH in retinal pigment epithelial cells revealed by dysfunctional rare CFH variants.

Stem Cell Reports

December 2024

Department of Cardio Metabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany. Electronic address:

Complement factor H (CFH) common genetic variants have been associated with age-related macular degeneration (AMD). While most previous in vitro RPE studies focused on the common p.His402Tyr CFH variant, we characterized rare CFH variants that are highly penetrant for AMD using induced pluripotent stem-cell-derived retinal pigment epithelium (iPSC-RPE).

View Article and Find Full Text PDF

Sunlight exposure is recognized as a risk factor for the development of age-related macular degeneration (AMD), a common neurodegenerative retinal disease in the elderly. Specifically, the blue light wavelengths within sunlight can negatively impact the physiology of light-sensitive retinal cells, including retinal pigmented epithelium (RPE) and photoreceptors. This review explores blue light-induced retinal degeneration, emphasizing the structural and functional impairments in RPE.

View Article and Find Full Text PDF

FADS1 inhibition protects retinal pigment epithelium cells from ferroptosis in age related macular degeneration.

Eur J Pharmacol

December 2024

Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China. Electronic address:

Purpose: Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly individuals. Retinal pigment epithelium (RPE) ferroptosis is a significant pathogenetic component in AMD. This study aims to elucidate the role and mechanisms of fatty acid desaturase 1 (FADS1) in ferroptosis as well as AMD progression.

View Article and Find Full Text PDF

Pleiotropic effects of mutant huntingtin on retinopathy in two mouse models of Huntington's disease.

Neurobiol Dis

December 2024

Department of Physiology & Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. Electronic address:

Huntington's disease (HD) is caused by the expansion of a CAG repeat, encoding a string of glutamines (polyQ) in the first exon of the huntingtin gene (HTTex1). This mutant huntingtin protein (mHTT) with extended polyQ forms aggregates in cortical and striatal neurons, causing cell damage and death. The retina is part of the central nervous system (CNS), and visual deficits and structural abnormalities in the retina of HD patients have been observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!