A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

EGFR Signaling Enhances Aerobic Glycolysis in Triple-Negative Breast Cancer Cells to Promote Tumor Growth and Immune Escape. | LitMetric

EGFR Signaling Enhances Aerobic Glycolysis in Triple-Negative Breast Cancer Cells to Promote Tumor Growth and Immune Escape.

Cancer Res

Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas. Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical, University, Taichung, Taiwan. Department of Biotechnology, Asia University, Taichung, Taiwan.

Published: March 2016

Oncogenic signaling reprograms cancer cell metabolism to augment the production of glycolytic metabolites in favor of tumor growth. The ability of cancer cells to evade immunosurveillance and the role of metabolic regulators in T-cell functions suggest that oncogene-induced metabolic reprogramming may be linked to immune escape. EGF signaling, frequently dysregulated in triple-negative breast cancer (TNBC), is also associated with increased glycolysis. Here, we demonstrated in TNBC cells that EGF signaling activates the first step in glycolysis, but impedes the last step, leading to an accumulation of metabolic intermediates in this pathway. Furthermore, we showed that one of these intermediates, fructose 1,6 bisphosphate (F1,6BP), directly binds to and enhances the activity of the EGFR, thereby increasing lactate excretion, which leads to inhibition of local cytotoxic T-cell activity. Notably, combining the glycolysis inhibitor 2-deoxy-d-glucose with the EGFR inhibitor gefitinib effectively suppressed TNBC cell proliferation and tumor growth. Our results illustrate how jointly targeting the EGFR/F1,6BP signaling axis may offer an immediately applicable therapeutic strategy to treat TNBC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4775355PMC
http://dx.doi.org/10.1158/0008-5472.CAN-15-2478DOI Listing

Publication Analysis

Top Keywords

tumor growth
12
triple-negative breast
8
breast cancer
8
cancer cells
8
immune escape
8
egf signaling
8
egfr signaling
4
signaling enhances
4
enhances aerobic
4
glycolysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!