The classical endogenous cannabinoid (CB) system is composed of the endocannabinoid signalling molecules, 2-arachidonoyl glycerol (2-AG) and anandamide (AEA) and their G-protein coupled receptors (GPCR), CB1 and CB2 which together constitutes the endocannabinoid system (ECS). However, putative, novel lipid-sensing CB receptors have recently been identified, including the orphan GPR55 and GPR18 receptors that are regulated by cannabinoid-like molecules and interact with CB system. CB receptors and associated orphan GPCRs are expressed at high levels in the immune and/or central nervous systems (CNS) and regulate a number of neurophysiological processes, including key events involved in neuroinflammation. As such, these receptors have been identified as emerging therapeutic targets for a number of brain disorders in which neuroinflammation is a key feature, including multiple sclerosis (MS) and Alzheimer's disease (AD). This review will consider the role of the wider cannabinoid receptor superfamily in mediating immune function with a focus on the immune processes that contribute to neuroinflammatory conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1389450117666160112113703 | DOI Listing |
Chembiochem
January 2025
University of Teramo: Universita degli Studi di Teramo, Veterinary Medicine, Piano d'Accio snc, 64100, Teramo, ITALY.
In this study, we employed a novel fluorescent probe, RO7304924-which selectively targets cannabinoid 2 receptor (CB2R)-to assess the lateral mobility of CB2R within the plasma membrane of Chinese hamster ovary cells stably expressing a functional, untagged receptor variant. Utilizing confocal fluorescence recovery after photobleaching (FRAP), we quantified the diffusion coefficient and mobile fraction of CB2R, thereby demonstrating the efficacy of RO7304924 as an innovative tool for elucidating the dynamics of this major endocannabinoid-binding G protein-coupled receptor. Our present findings highlight the potential of combining advanced ligand-based fluorescent probes with FRAP for future investigations into the biochemical details of CB2R mobility in living cells, and its impact on receptor-dependent cellular processes.
View Article and Find Full Text PDFCurr Top Behav Neurosci
January 2025
Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA.
In the last two decades, the endocannabinoid system has emerged as a crucial modulator of motivation and emotional processing. Due to its widespread neuroanatomical distribution and characteristic retrograde signaling nature, cannabinoid type I receptors and their endogenous ligands finely orchestrate somatic and axon terminal activity of dopamine neurons. Owing to these unique features, this signaling system is a promising pharmacological target to ameliorate dopamine-mediated drug-seeking behaviors while circumventing the adverse side effects of, for instance, dopaminergic antagonists.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States.
Cannabinoid receptor 1 (CB1R) has been extensively studied as a potential therapeutic target for various conditions, including pain management, obesity, emesis, and metabolic syndrome. Unlike orthosteric agonists such as Δ-tetrahydrocannabinol (THC), cannabidiol (CBD) has been identified as a negative allosteric modulator (NAM) of CB1R, among its other pharmacological targets. Previous computational and structural studies have proposed various binding sites for CB1R NAMs.
View Article and Find Full Text PDFJ Nat Prod
January 2025
Charlotte's Web, 700 Tech Court, Louisville, Colorado 80027, United States.
Cannabicyclol ((±)-CBL), a minor phytocannabinoid, is largely unexplored, with its biological activity previously undocumented. We studied its conversion from cannabichromene (CBC) using various acidic catalysts. Montmorillonite (K30) in chloroform at room temperature had the highest yield (60%) with minimal byproducts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!