Phototriggered fibril-like environments arbitrate cell escapes and migration from endothelial monolayers.

Biomaterials

Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128, Mainz, Germany; INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany; Saarland University, Campus Saarbrücken D2 2, 66123, Saarbrücken, Germany. Electronic address:

Published: March 2016

Cell detachment and migration from the endothelium occurs during vasculogenesis and also in pathological states. Here, we use a novel approach to trigger single cell release from an endothelial monolayer by in-situ opening of adhesive, fibril-like environment using light-responsive ligands and scanning lasers. Cell escapes from the monolayer were observed on the fibril-like adhesive tracks with 3-15 μm width. The frequency of endothelial cell escapes increased monotonically with the fibril width and with the density of the light-activated adhesive ligand. Interestingly, treatment with VEGF induced cohesiveness within the cell layer, preventing cell leaks. When migrating through the tracks, cells presented body lateral reduction and nuclear deformation imposed by the line width and dependent on myosin contractility. Cell migration mode changed from mesenchymal to amoeboid-like when the adhesive tracks narrowed (≤5 μm). Moreover, cell nucleus was shrunk showing packed DNA on lines narrower than the nuclear dimensions in a mechanisms intimately associated with the stress fibers. This platform allows the detailed study of escapes and migratory transitions of cohesive cells, which are relevant processes in development and during diseases such as organ fibrosis and carcinomas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2015.12.001DOI Listing

Publication Analysis

Top Keywords

cell escapes
12
cell
9
adhesive tracks
8
phototriggered fibril-like
4
fibril-like environments
4
environments arbitrate
4
arbitrate cell
4
escapes
4
escapes migration
4
migration endothelial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!