CpBck1, an ortholog of the cell-wall integrity mitogen-activated protein kinase kinase kinase of Saccharomyces cerevisiae, was cloned and characterized from the chestnut blight fungus Cryphonectria parasitica. The CpBck1-null mutant displayed cell wall integrity-related phenotypic changes such as abnormal cell morphology and wall formation and hypersensitivity to cell wall-disrupting agents. In addition, the mutant showed severely retarded growth without any sign of normal development, such as hyphal differentiation, conidiation, or pigmentation. As the culture proceeded, the mutant colony showed sporadic sectorization. Once sectored, the sectored phenotype of robust mycelial growth without differentiation was stably inherited. Compared with the wild type, both the parental CpBck1-null mutant and the sectored progeny exhibited marked impaired virulence. The present study revealed that a mutation in a signaling pathway component related to cell-wall integrity resulted in sporadic sectorization and these sectored phenotypes were stably inherited, suggesting that this signal transduction pathway is implicated in adaptive genetic changes for sectorization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/MPMI-08-15-0185-R | DOI Listing |
mBio
November 2024
State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China.
Unlabelled: As the most abundant eukaryotic mRNA modification, N-methyladenosine (mA) plays a crucial role in regulating multiple biological processes. This methylation is regulated by methyltransferases and demethylases. However, the regulatory role and mode of action of mA demethylases in fungi remain poorly understood.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Forest Research, Plant Pathology Department, Alice Holt Lodge, Wrecclesham GU104LH, Surrey, UK.
Cryphonectria hypovirus 1 (CHV1) is successful in controlling , the causal agent of chestnut blight, but little is known regarding its transmission to other fungi, for example the European . In this study, CHV1 was transmitted (circa 200,000-800,000 copies/microliter) to seven isolates from infected . Reverse transmission to virus-free (European 74 testers collection) was achieved, although it was less successful (250-55,000 copies/µL) and was dependent on the vegetative compatibility (VC) group.
View Article and Find Full Text PDFPlants (Basel)
October 2024
Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska 23, 10000 Zagreb, Croatia.
Since its introduction into Europe in the first half of the 20th century, has been gradually spreading across the natural range of the sweet chestnut ( Mill.), infecting the trees and causing lethal bark cankers. Serendipitously, a hyperparasitic Cryphonectria hypovirus 1 (CHV1), which attenuates virulence in combination with more tolerant European chestnut species, was able to ward off the worst effect of the disease.
View Article and Find Full Text PDFViruses
July 2024
Department of Plant Protection, Faculty of Agriculture, Bolu Abant İzzet Baysal University, Bolu 14030, Türkiye.
Some mycoviruses can be considered as effective biocontrol agents, mitigating the impact of phytopathogenic fungi and consequently reducing disease outbreaks while promoting plant health. , the causal agent of chestnut blight and a highly destructive pathogen, experienced a notable decrease in its virulence with the identification of cryphonectria hypovirus 1 (CHV1), a naturally occurring biocontrol agent. In this study, two innovative diagnostic protocols designed for the accurate and efficient detection of CHV1 are introduced.
View Article and Find Full Text PDFPLoS Pathog
August 2024
State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China.
In eukaryotic cells, N6-methyladenosine (m6A) is the most prevalent RNA epigenetic modification that plays crucial roles in multiple biological processes. Nevertheless, the functions and regulatory mechanisms of m6A in phytopathogenic fungi are poorly understood. Here, we showed that CpMTA1, an m6A methyltransferase in Cryphonectria parasitica, plays a crucial role in fungal phenotypic traits, virulence, and stress tolerance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!