AI Article Synopsis

  • The p85α subunit of PI3K influences cancer cell growth and mobility, contributing to their resistance to chemotherapy; TSWU-CD4 is a new compound that reduces cancer cell invasion by lowering MMP-2 expression.
  • TSWU-CD4's impact on MMP-2 and invasion can be reversed by introducing the p85α subunit or specific active forms of MAPK, indicating that p85α and MAPK pathways are crucial for cancer cell motility.
  • The mechanism involves disrupting the interaction between p85α and Rac1 in lipid rafts, suppressing MMP-2 through the PI3K-Akt-ERK-MAP kinase-NF-κB signaling pathway,

Article Abstract

The p85α subunit of phosphatidylinositol 3-kinase (PI3K) acts as a key regulator of cell proliferation and motility, which mediates signals that confer chemoresistance to many human cancer cells. Using small interfering RNAs against matrix metalloproteinase-2 (MMP-2) and the MMP-2 promoter-driven luciferase assay, we showed that the new synthetic bichalcone analog TSWU-CD4 inhibits the invasion of human cancer cells by down-regulating MMP-2 expression. Treatment with TSWU-CD4 inhibited MMP-2 expression and cell invasion, which were restored by ectopic wild type (wt) p85α or a constitutively active form of MAPK kinase 3 (CA MKK3), CA MKK6, or CA p38α mitogen-activated protein kinase (MAPK). The attenuated formation of lipid raft-associated phospho (p)-p85α-GTP-Rac1 complexes, protein kinase B (Akt) Ser 473 phosphorylation, and cell invasion by TSWU-CD4 was reversed by overexpression of wt p85α or the p85α Brc-homology (BH) domain. The ectopic expression of CA Rac1 (but not wt Rac1) could overcome the suppression of Ser 473 phosphorylation, lipid raft association of Akt, the interaction between GTP-bound Rac1 and p85α in lipid rafts, and cell invasion by TSWU-CD4. The involvement of Akt activity in the functions of NF-κB-mediated MMP-2 was further confirmed through the attenuation of Akt phosphorylation signaling using the Akt-specific inhibitor MK-2206 and ectopic expression of NF-κB p65. Collectively, the inhibitory effect of TSWU-CD4 on cancer cell invasion was likely to suppress the p-p85α-GTP-Rac1 interaction in lipid rafts by targeting the p85α BH domain, which resulted in the suppression of MMP-2 expression via the PI3K-Akt-mediated ERK-MKK3/MKK6-p38 MAPK-NF-κB signaling pathway. © 2016 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mc.22455DOI Listing

Publication Analysis

Top Keywords

cell invasion
20
mmp-2 expression
12
lipid raft
8
bichalcone analog
8
cancer cell
8
human cancer
8
cancer cells
8
protein kinase
8
ser 473
8
473 phosphorylation
8

Similar Publications

The accurate non-invasive detection and estimation of central aortic pressure waveforms (CAPW) are crucial for reliable treatments of cardiovascular system diseases. But the accuracy and practicality of current estimation methods need to be improved. Our study combines a meta-learning neural network and a physics-driven method to accurately estimate CAPW based on personalized physiological indicators.

View Article and Find Full Text PDF

Purpose: To report a case of biopsy-proven sarcoidosis in a patient with panuveitis and a positive interferon-gamma release assay (IGRA) from a non-endemic tuberculosis (TB) country.

Methods: Case report.

Results: A 26-year-old male from the United Arab Emirates (UAE) presented with granulomatous panuveitis characterized by mutton-fat keratic precipitates, anterior chamber and vitreous cells, and retinal vasculitis.

View Article and Find Full Text PDF

Effect of Defined Block Sequence Terpolymers on Antifungal Activity and Biocompatibility.

Macromol Biosci

January 2025

Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia.

Invasive fungal infections cause over 3.7 million deaths worldwide annually, underscoring the critical need for new antifungal agents. Developing selective antifungal agents is challenging due to the shared eukaryotic nature of both fungal and mammalian cells.

View Article and Find Full Text PDF

Cellular metabolism is inextricably linked to transmembrane levels of proton (H), sodium (Na), and potassium (K) ions. Although reduced sodium-potassium pump (Na-K ATPase) activity in tumors directly disturbs transmembrane Na and K levels, this dysfunction is a result of upregulated aerobic glycolysis generating excessive cytosolic H (and lactate) which are extruded to acidify the interstitial space. These oncogene-directed metabolic changes, affecting intracellular Na and H, can be further exacerbated by upregulation of ion exchangers/transporters.

View Article and Find Full Text PDF

Elevated LINC00115 expression correlates with aggressive endometrial cancer phenotypes via JAK/STAT pathway modulation.

Hum Mol Genet

January 2025

Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of CM, No. 19, Renmin Road, Jinshui District, Zhengzhou City, Henan Province, China.

This study systematically explores the oncogenic role of the long non-coding RNA (lncRNA) LINC00115 in endometrial cancer (EC) and reveals its unique mechanism in promoting proliferation, invasion, and metastasis via the JAK/STAT signaling pathway. LINC00115 is significantly upregulated in EC tissues and closely associated with advanced TNM staging and lymph node metastasis. Functional assays showed that knockdown of LINC00115 suppressed EC cell proliferation, invasion, and metastasis, while overexpression enhanced these malignant behaviors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!