A novel hybrid construct was developed by combining aligned fibers (AFs) and random fibers (RFs) to form a scaffolding system. Homogeneous fiber-based structures were fabricated by electrospinning, which produced both random and aligned fiber mats depending on the collection method. The upper part of the scaffold contained an AF layer, which possessed a well-organized configuration that provided uniaxial topographic guidance. For mechanical stability and support, the lower part of the scaffold was composed of an RF layer. Despite the presence of randomly distributed RFs, desirable alignment and differentiation could be achieved in cultured C2C12 myoblasts by controlling the density of AF layer. The fibrous structure of the hybrid scaffold also exhibited high porosity and therefore reasonable permeability. Owing to the structural stability provided by the underlying RFs, the cell-laden fibrous scaffolds were amenable to physical manipulation, such as multilayering. Collectively, the morphological features and manipulable architecture of the developed scaffolds suggest that they would perform well in practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b11529 | DOI Listing |
ACS Nano
January 2025
Institute of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China.
Photoassisted lithium-sulfur (Li-S) batteries offer a promising approach to enhance the catalytic transformation kinetics of polysulfide. However, the development is greatly hindered by inadequate photo absorption and severe photoexcited carriers recombination. Herein, a photonic crystal sulfide heterojunction structure is designed as a bifunctional electrode scaffold for photoassisted Li-S batteries.
View Article and Find Full Text PDFMolecules
January 2025
Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
Fifteen compounds (-) constructed on a hybrid structure combining a β-phenyl-α,β-unsaturated carbonyl template and a 2-aminothiazol-4(5)-one scaffold were designed and synthesized as potential novel anti-tyrosinase substances. Two compounds ( and ) showed more potent inhibition against mushroom tyrosinase than kojic acid, and the inhibitory activity of (IC value: 1.60 μM) was 11 times stronger than that of kojic acid.
View Article and Find Full Text PDFBiomolecules
January 2025
Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan.
Synthetic cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) are promising candidates for vaccine adjuvants, because they activate immune responses through the Toll-like receptor 9 (TLR9) pathway. However, unmodified CpG ODNs are quickly degraded by serum nucleases, and their negative charge hinders cellular uptake, limiting their clinical application. Our group previously reported that guanine-quadruplex (G4)-forming CpG ODNs exhibit enhanced stability and cellular uptake.
View Article and Find Full Text PDFBioorg Chem
January 2025
Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 Egypt. Electronic address:
Novel 1,2,3-triazole hybrids bearing various substituents have been synthesized as potential anticancer agents. Ligand-based approach has been adopted to design these compounds relying on the hybridization of 1,2,3-triazole with α,β-unsaturated carbonyl, 5- and 6-membered heterocyclic scaffolds. All synthesized members were investigated for their cytotoxic potency against nine types comprising 60 panels of human cancerous cells by the US National Cancer Institute: Development Therapeutic Program (US_NCI_DTP).
View Article and Find Full Text PDFMed Chem
January 2025
Department of Pharmacy, Division of Research and Innovation, Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India.
Introduction: Heterocyclic derivatives, particularly those containing heteroatoms such as oxygen and nitrogen, represent a significant portion of currently marketed drugs. Among these, the aromatic heterocycle 1,3,4-oxadiazole, characterized by an N=C=O-linkage, stands out due to its remarkable biological activities. These activities include anti-inflammatory, anti-cancer, antioxidant, anti-tubercular, antiviral, anti-diabetic, and antibacterial effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!