Background And Purpose: There is evidence supporting a role for the nociceptin/orphanin FQ (N/OFQ; NOP) receptor and its endogenous ligand N/OFQ in the modulation of neurogenic inflammation, airway tone and calibre. We hypothesized that NOP receptor activation has beneficial effects upon asthma immunopathology and airway hyperresponsiveness. Therefore, the expression and function of N/OFQ and the NOP receptor were examined in healthy and asthmatic human airway tissues. The concept was further addressed in an animal model of allergic asthma.

Experimental Approach: NOP receptor expression was investigated by quantitative real-time PCR. Sputum N/OFQ was determined by RIA. N/OFQ function was tested using several assays including proliferation, migration, collagen gel contraction and wound healing. The effects of N/OFQ administration in vivo were studied in ovalbumin (OVA)-sensitized and challenged mice.

Key Results: NOP receptors were expressed on a wide range of human and mouse immune and airway cells. Eosinophils expressed N/OFQ-precursor mRNA and their number correlated with N/OFQ concentration. N/OFQ was found in human sputum and increased in asthma. Additionally, in asthmatic human lungs N/OFQ immunoreactivity was elevated. NOP receptor activation inhibited migration of immunocytes and increased wound healing in airway structural cells. Furthermore, N/OFQ relaxed spasmogen-stimulated gel contraction. Remarkably, these findings were mirrored in OVA-mice where N/OFQ treatment before or during sensitization substantially reduced airway constriction and immunocyte trafficking to the lung, in particular eosinophils. N/OFQ also reduced inflammatory mediators and mucin production.

Conclusions And Implications: We demonstrated a novel dual airway immunomodulator/bronchodilator role for N/OFQ and suggest targeting this system as an innovative treatment for asthma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4940820PMC
http://dx.doi.org/10.1111/bph.13416DOI Listing

Publication Analysis

Top Keywords

nop receptor
20
n/ofq
13
nociceptin/orphanin n/ofq
8
airway
8
immunopathology airway
8
airway hyperresponsiveness
8
treatment asthma
8
n/ofq nop
8
receptor activation
8
asthmatic human
8

Similar Publications

The N/OFQ-NOP receptor is a fascinating peptidergic system with the potential to be exploited for the development of analgesic drugs devoid of side effects associated with classical opioid signalling modulation. To date, up to four X-ray and cryo-EM structures of the NOP receptor in complex with the endogenous peptide agonist N/OFQ and three small molecule antagonists have been solved and released. Despite the available structural information, the details of selective small molecule agonist binding to the NOP receptor in the active state remain elusive.

View Article and Find Full Text PDF

Nuclear Factor-κB Signaling Regulates the Nociceptin Receptor but Not Nociceptin Itself.

Cells

December 2024

Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland.

The nociceptin receptor (NOP) and nociceptin are involved in the pathways of pain and inflammation. The potent role of nuclear factor-κB (NFκB) in the modulation of tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β on the nociceptin system in human THP-1 cells under inflammatory conditions were investigated. Cells were stimulated without/with phorbol-myristate-acetate (PMA), TNF-α, IL-1β, or PMA combined with individual cytokines.

View Article and Find Full Text PDF

The endocannabinoid system (ECS) and nociceptin receptor (NOP) have been implicated in the pathology of inflammatory bowel diseases (IBD) mediating pain and alleviating inflammation. In this study we searched for the possible activation of ECS and NOP system and the correlation between CB1, CB2 and NOP receptors in IBD patients. Patients diagnosed with IBDs who underwent colonic surgical resection or biopsy at colonoscopy and control group (patients without diagnosis of IBD, which colonoscopy for the different medical indications) were recruited into the study.

View Article and Find Full Text PDF

The impact of endogenous N/OFQ on DPN: Insights into lower limb blood flow regulation in rats.

Neuropeptides

January 2025

College of Anesthesiology, Shanxi Medical University, Taiyuan 030000, China; Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China. Electronic address:

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes, often accompanied by impaired vascular endothelial function in the lower limbs. This dysfunction is characterized by a reduced vasodilatory response, leading to decreased blood flow in the lower limbs and ultimately contributing to the development of diabetic peripheral neuropathy. To delve deeper into this pathological process, the study employed bioinformatics to identify and analyze genes highly active in DPN.

View Article and Find Full Text PDF

Induction of orofacial pain potentiates fibromyalgia symptoms in mice: Relevance of nociceptin system.

Life Sci

December 2024

PUCRS, Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Curso de Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Porto Alegre, RS, Brazil. Electronic address:

Aims: Fibromyalgia patients might experience temporomandibular disorder (TMD) as a comorbidity. However, the connection between these two syndromes is not fully understood. Nociceptin (N/OFQ) and NOP receptors are implicated in both conditions, but their relevance in the comorbidity needs investigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!