The recent development of next-generation sequencing technology for extensive mutation analysis, and beadarray technology for genome-wide DNA methylation analysis has made it possible to obtain integrated pictures of genetic and epigenetic alterations, using the same cancer samples. In this study, we aimed to characterize such a picture in esophageal squamous cell carcinomas (ESCCs). Base substitutions of 55 cancer-related genes and copy number alterations (CNAs) of 28 cancer-related genes were analyzed by targeted sequencing. Forty-four of 57 ESCCs (77%) had 64 non-synonymous somatic mutations, and 24 ESCCs (42%) had 35 CNAs. A genome-wide DNA methylation analysis using an Infinium HumanMethylation450 BeadChip array showed that the CpG island methylator phenotype was unlikely to be present in ESCCs, a different situation from gastric and colon cancers. Regarding individual pathways affected in ESCCs, the WNT pathway was activated potentially by aberrant methylation of its negative regulators, such as SFRP1, SFRP2, SFRP4, SFRP5, SOX17, and WIF1 (33%). The p53 pathway was inactivated by TP53 mutations (70%), and potentially by aberrant methylation of its downstream genes. The cell cycle was deregulated by mutations of CDKN2A (9%), deletions of CDKN2A and RB1 (32%), and by aberrant methylation of CDKN2A and CHFR (9%). In conclusion, ESCCs had unique methylation profiles different from gastric and colon cancers. The genes involved in the WNT pathway were affected mainly by epigenetic alterations, and those involved in the p53 pathway and cell cycle regulation were affected mainly by genetic alterations. © 2016 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mc.22452DOI Listing

Publication Analysis

Top Keywords

dna methylation
12
aberrant methylation
12
esophageal squamous
8
squamous cell
8
genome-wide dna
8
methylation analysis
8
epigenetic alterations
8
cancer-related genes
8
gastric colon
8
colon cancers
8

Similar Publications

Introduction: We conducted a panoramic analysis of GBN5 expression and prognosis in 33 cancers, aiming to deepen the systematic understanding of GBN5 in cancer.

Materials And Methods: We employed a multi-omics approach, including transcriptomic, genomic, proteomic, single-cell cytomic, spatial transcriptomic, and genomic data, to explore the prognostic value and potential oncogenic mechanisms of GBN5 across pan-cancers from multiple perspectives.

Results: We found that GBN5 was differentially expressed in multiple tumors and showed early diagnostic value.

View Article and Find Full Text PDF

The Impact of Modifiable Risk Factors on the Endothelial Cell Methylome and Cardiovascular Disease Development.

Front Biosci (Landmark Ed)

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.

Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.

View Article and Find Full Text PDF

Background/objectives: The DNA methylation of neonatal cord blood can be used to accurately estimate gestational age. This is known as epigenetic gestational age. The greater the difference between epigenetic and chronological gestational age, the greater the association with an inappropriate perinatal fetal environment and development.

View Article and Find Full Text PDF

A Guinea Pig Model of Pediatric Metabolic Dysfunction-Associated Steatohepatitis: Poor Vitamin C Status May Advance Disease.

Nutrients

January 2025

Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.

Children and teenagers display a distinct metabolic dysfunction-associated steatohepatitis (MASH) phenotype, yet studies of childhood MASH are scarce and validated animal models lacking, limiting the development of treatments. Poor vitamin C (VitC) status may affect MASH progression and often co-occurs with high-fat diets and related metabolic imbalances. As a regulator of DNA methylation, poor VitC status may further contribute to MASH by regulating gene expression This study investigated guinea pigs-a species that, like humans, depends on vitC in the diet-as a model of pediatric MASH, examining the effects of poor VitC status on MASH hallmarks and global DNA methylation levels.

View Article and Find Full Text PDF

DNA methylation has been widely studied with the goal of correlating the genome profiles of various diseases with epigenetic mechanisms. Multiple approaches have been developed that employ extensive steps, such as bisulfite treatments, polymerase chain reactions (PCR), restriction digestion, sequencing, mass analysis, etc., to identify DNA methylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!