We investigate the incorporation of manganese into self-catalyzed GaAs nanowires grown in molecular beam epitaxy. Our study reveals that Mn accumulates in the liquid Ga droplet and that no significant incorporation into the nanowire is observed. Using a sequential crystallization of the droplet, we then demonstrate a deterministic and epitaxial growth of MnAs segments at the nanowire tip. This technique may allow the seamless integration of multiple room-temperature ferromagnetic segments into GaAs nanowires with high-crystalline quality.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.5b03658DOI Listing

Publication Analysis

Top Keywords

gaas nanowires
12
epitaxial growth
8
room-temperature ferromagnetic
8
mnas segments
8
segments gaas
8
sequential crystallization
8
growth room-temperature
4
ferromagnetic mnas
4
nanowires sequential
4
crystallization investigate
4

Similar Publications

The processes of electrochemical deposition of Ni on vertically aligned GaAs nanowires (NWs) grown by molecular-beam epitaxy (MBE) using Au as a growth catalyst on Si(111) substrates were studied. Based on the results of electrochemical deposition, it was concluded that during the MBE synthesis of NWs the self-induced formation of conductive channels can occur inside NWs, thereby forming quasi core-shell nanowires. Depending on the length of the channel compare to the NW heights and the parameters of electrochemical deposition, the different hybrid metal-semiconductor nanostructures, such as Ni nanoparticles on GaAs NW side walls, Ni clusters on top ends of GaAs NWs, core-shell Ni/GaAs NWs, were obtained.

View Article and Find Full Text PDF

A thermal diode, which, by analogy to its electrical counterpart, rectifies heat current, is the building block for thermal circuits. To realize a thermal diode, we demonstrate thermal rectification in a GaAs telescopic nanowire system using the thermal bridge method. We measured a preferred direction of heat flux, achieving rectification values ranging from 2 to 8% as a function of applied thermal bias.

View Article and Find Full Text PDF

Lead Catalyzed GaAs Nanowires Grown by Molecular Beam Epitaxy.

Nanomaterials (Basel)

November 2024

Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia.

This study investigates the growth of gallium arsenide nanowires, using lead as a catalyst. Typically, nanowires are grown through the vapor-solid-liquid mechanism, where a key factor is the reduction in the nucleation barrier beneath the catalyst droplet. Arsenic exhibits limited solubility in conventional catalysts; however, this research explores an alternative scenario in which lead serves as a solvent for arsenic, while gallium and lead are immiscible liquids.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers mapped the three-dimensional strain field and identified how indium content in the shell impacts the strain distribution and plastic relaxation processes.
  • * The study found that although axial strains are uniform, radial and tangential strain gradients occur due to strain concentration at interfaces, affecting the growth strategies for these nanowires.
View Article and Find Full Text PDF

Tunable GaAsP Quantum-Dot Emission in Wurtzite GaP Nanowires.

ACS Appl Mater Interfaces

November 2024

NEST Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, 56127 Pisa, Italy.

We present a fairly understudied material system suitable for the realization of tunable quantum-dot (QD) emission within the visible-to-near-infrared spectrum (in particular, in the 650-720 nm wavelength range). Specifically, crystal-pure wurtzite gallium phosphide (GaP) nanowires (NWs) are synthesized, incorporating single gallium arsenide phosphide (GaAsP) QDs of various compositions. Detailed growth procedures are outlined, accompanied by an analysis of the synthesis challenges encountered during the realization of these nanostructures and the strategies to solve them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!