The generation, under self-assembly conditions, of coordination polymers on surface based combinations of a terpyridine-antracene-pyridine based tecton and Co(II) or Pd(II) cations is primarily governed by the coordination geometry of the metal center (octahedral and square planar respectively). While the octahedral Co(II) based polymer self-assembles in insulating films exhibiting randomly oriented crystalline domains, the planarity of Pd(II) based polymers leads to the formation of conductive π-π stacked fibrillar structures exhibiting anisotropically oriented domains. In the latter case, the favorable Pd-Pd and anthracene-anthracene wavefunction overlaps along the fiber direction are responsible for the large electronic couplings between adjacent chains, whereas small electronic couplings are instead found along individual polymer chains. These results provide important guidelines for the design of conductive metal coordination polymers, highlighting the fundamental role of both intra- as well as inter-chain interactions, thus opening up new perspectives towards their application in functional devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5nr07776aDOI Listing

Publication Analysis

Top Keywords

coordination polymers
12
electronic couplings
8
based
5
influence supramolecular
4
supramolecular order
4
order electrical
4
electrical properties
4
coordination
4
properties coordination
4
polymers
4

Similar Publications

Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities.

Nat Commun

December 2024

College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China.

Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal-organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases).

View Article and Find Full Text PDF

Identifying and tuning coordinated water molecules for efficient electrocatalytic water oxidation.

Nat Commun

December 2024

Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China.

Coordination complexes are promising candidates for powerful electrocatalytic oxygen evolution reaction but challenges remain in favoring the kinetics behaviors through local coordination regulation. Herein, by refining the synergy of carboxylate anions and multiconjugated benzimidazole ligands, we tailor a series of well-defined and stable coordination complexes with three-dimensional supramolecular/coordinated structures. The coordinated water as potential open coordination sites can directly become intermediates, while the metal center easily achieves re-coordination with water molecules in the pores to resist lattice oxygen dissolution.

View Article and Find Full Text PDF

Multi-Functional Semiconductor Polymer Doped Wide Bandgap Layer for All-Perovskite Solar Cells with High Efficiency and Long Durability.

Small

December 2024

Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.

The study presents a multi-functional and semiconductor polymer poly[bis(3-hexylthiophen-2-yl)thieno[3,4-c]pyrrole-4,6-dione] (PBDTTPD) doping strategy that significantly enhanced the performance of the two-terminal all-perovskite tandem perovskite solar cells (T-PSCs). An optimized power conversion efficiency (PCE) of 26.87% has been achieved.

View Article and Find Full Text PDF

Metallogels built in a bottom-up approach by metal coordination and supramolecular interactions have important potential for the elaboration of smart materials. In this context, we present here the formation of supramolecular coordination polymers driven by the complexation of cobalt(II) or zinc(II) ions with polyoxometalate-based hybrids displaying two terpyridine ligands in a linear arrangement. Thanks to the electrostatic interactions between the polyoxometalate cores and metal nodes, the polymer chains self-assemble into fibers that physically cross-link to form gels above a critical concentration.

View Article and Find Full Text PDF

Microplastics (MPs) are ubiquitous and are increasing globally, but there is limited information available on their presence in freshwater ecosystems. This research work aims to investigate the abundance, sinking behavior, and risk assessment of MPs in the freshwater River Basantar, Jammu & Kashmir, India. Microplastic abundance in sediments was recorded in the range of 1-6 items g, with a mean abundance of 3 ± 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!