The auto-aggregating ability of a probiotic is a prerequisite for colonization and protection of the gastrointestinal tract, whereas co-aggregation provides a close interaction with pathogenic bacteria. Peptide pheromone mediated signaling has been studied in several systems. However, it has not yet been explored in prokaryotes, especially actinobacteria. Hence, in the present study, the diffusible aggregation promoting factor was purified from the culture supernatant of a potent actinobacterial probiont and characterized using 20 different actinobacterial cultures isolated from the gut region of chicken and goat. The results showed that the pheromone-like compound induces the aggregation propensity of treated isolates. The factor was found to be a heat stable, acidic pH resistant, low molecular weight peptide which enhances the biofilm forming ability of other actinobacterial isolates. The aggregation promoting factor represents a bacterial sex factor (pheromone) and its characterization confirms its usage in the probiotic formulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08927014.2015.1122759 | DOI Listing |
Sci Rep
January 2025
Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girl Branch), Cairo, Egypt.
Biosynthesized nanoparticles have a variety of applications, and microorganisms are considered one of the most ideal sources for the synthesis of green nanoparticles. Icerya aegyptiaca (Douglas) is a pest that has many generations per year and can affect 123 plant species from 49 families by absorbing sap from bark, forming honeydew, causing sooty mold, and attracting invasive ant species, leading to significant agricultural losses. The purpose of this work was to synthesize titanium dioxide nanoparticles (TiO-NPs) from marine actinobacteria and evaluate their insecticidal effects on Icerya aegyptiaca (Hemiptera: Monophlebidae), in addition to explaining their effects on protein electrophoresis analysis of SDS‒PAGE proteins from control and treated insects after 24, 72 and 120 h of exposure.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Center for Molecular and Cellular Biology, 121205 Moscow, Russia.
Antibiotic resistance has been and remains a major problem in our society. The main solution to this problem is to search and study the mechanisms of antibiotic action. Many groups of secondary metabolites, including antimicrobial ones, are produced by the phylum.
View Article and Find Full Text PDFCurr Microbiol
December 2024
B.S.Abdur Rahman Crescent Institute of Science & Technology, Chennai, Tamil Nadu, 600048, India.
Lichen-associated endophytic Actinobacteria, particularly Streptomyces species, are recognized for their production of bioactive secondary metabolites with significant pharmaceutical potential. With the escalating prevalence of diseases, Streptomyces species are being investigated for its natural source of antimicrobial compounds for new antibiotics. This study focuses on the bioactive properties of secondary metabolites from lichen-associated endophytic Actinobacteria, focusing on Streptomyces glaucescens NTSB-37 isolated form lichen, Parmotrema perlatum (Huds.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
December 2024
Department of Biological Sciences and Biotechnology, Hannam University, Daejon 34054, Republic of Korea.
Two mycelium-forming actinobacterial strains, designated as DLS-47 and DLS-62, were isolated from volcanic ash collected from the surface of a rock on the peak of Darangshi Oreum (a volcanic cone) in Jeju, Republic of Korea, and their taxonomic positions were investigated by a polyphasic approach. Both of the isolates showed growth at 20-42 °C, pH 6.0-9.
View Article and Find Full Text PDFMicrob Biotechnol
December 2024
CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.
Actinomycetota are unrivalled producers of bioactive natural products, with strains living in association with macroalgae representing a prolific-yet largely unexplored-source of specialised chemicals. In this work, we have investigated the bioactive potential of Actinomycetota from macroalgae through culture-dependent and -independent approaches. A bioprospecting pipeline was applied to a collection of 380 actinobacterial strains, recovered from two macroalgae species collected in the Portuguese northern shore-Codium tomentosum and Chondrus crispus-in order to explore their ability to produce antibacterial, antifungal, anticancer and lipid-reducing compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!