Association of Aortic Stiffness With Cognition and Brain Aging in Young and Middle-Aged Adults: The Framingham Third Generation Cohort Study.

Hypertension

From the Department of Neurology, Boston University School of Medicine, MA (M.P.P., J.J.H., A.B., S.S.); Framingham Heart Study, MA (M.P.P., J.J.H., G.F.M., A.B., M.G.L., R.S.V., S.S.); Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Victoria, Australia (M.P.P.); Cardiovascular Engineering Inc, Norwood, MA (G.F.M.); Department of Biostatistics, Boston University School of Public Health, MA (A.B.); Department of Neurology, School of Medicine and Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California Davis, Sacramento (P.M., C.D.); and Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Centre, Boston, MA (C.T.).

Published: March 2016

Aortic stiffness is associated with cognitive decline and cerebrovascular disease late in life, although these associations have not been examined in young adults. Understanding the effects of aortic stiffness on the brain at a young age is important both from a pathophysiological and public health perspective. The aim of this study was to examine the cross-sectional associations of aortic stiffness with cognitive function and brain aging in the Framingham Heart Study Third Generation cohort (47% men; mean age, 46 years). Participants completed the assessment of aortic stiffness (carotid-femoral pulse wave velocity), a neuropsychological test battery assessing multiple domains of cognitive performance and magnetic resonance imaging to examine subclinical markers of brain injury. In adjusted regression models, higher aortic stiffness was associated with poorer processing speed and executive function (Trail Making B-A; β±SE, -0.08±0.03; P<0.01), larger lateral ventricular volumes (β±SE, 0.09±0.03; P<0.01) and a greater burden of white-matter hyperintensities (β±SE, 0.09±0.03; P<0.001). When stratifying by age, aortic stiffness was associated with lateral ventricular volume in young adults (30-45 years), whereas aortic stiffness was associated with white-matter injury and cognition in midlife (45-65 years). In conclusion, aortic stiffness was associated with cognitive function and markers of subclinical brain injury in young to middle-aged adults. Prospective studies are needed to examine whether aortic stiffening in young adulthood is associated with vascular cognitive impairment later in life.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4752398PMC
http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06610DOI Listing

Publication Analysis

Top Keywords

aortic stiffness
24
brain aging
8
third generation
8
generation cohort
8
stiffness associated
8
stiffness
6
aortic
5
association aortic
4
stiffness cognition
4
brain
4

Similar Publications

Background: Heart failure with preserved ejection fraction (HFpEF) is a high prevalence condition, with high rates of hospitalization and mortality. Arterial hypertension is the main risk factor for HFpEF. Among hypertensive patients, alterations in cardiac and vascular morphology identify hypertension-mediated organ damage (HMOD).

View Article and Find Full Text PDF

Background: The arterial stiffening is attributed to the intrinsic structural stiffening and/or load-dependent stiffening by increased blood pressure (BP). The respective lifetime alterations and major determinants of the two components with normal aging are not clear.

Methods: A total of 3053 healthy adults (1922 women) aged 18-79 years were enrolled.

View Article and Find Full Text PDF

The importance of central hemodynamic metrics such as Central blood pressure (CBP), which directly measure the pressure exerted by the cardiac muscle on the major arteries, offering a more direct assessment of cardiovascular workload compared to brachial blood pressure (bBP), which measures pressure against the walls of peripheral arteries. This review consolidates findings that evaluate the correlation between CBP and key markers of aortovascular disease. The growth of thoracic aortic aneurysm (TAA) is a significant component of aortovascular assessment.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA.

Background: Cerebral arterial dilatation, signifying outward vascular remodeling, is linked to a higher risk of Alzheimer's disease and a higher burden of white matter hyperintensities (WMH). Arterial dilatation may disrupt cerebral hemodynamics and lead to delayed blood arrival to the brain, which is itself linked to an increased burden of WMH. We examined if arterial dilatation was associated with blood arrival timing and if blood arrival timing mediated the effect of arterial dilatation on WMH burden.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!