A portable fluorescence detection system for use with microchip electrophoresis was developed and compared to a benchtop system. Using this system, six neuroactive amines commonly found in brain dialysate (arginine, citrulline, taurine, histamine, glutamate, and aspartate) were derivatized offline with naphthalene-2,3-dicarboxaldehyde/cyanide, separated electrophoretically, and detected by fluorescence. The limits of detection for the analytes of interest were 50 - 250 nM for the benchtop system and 250 nM - 1.3 μM for the portable system, both of which were adequate for most analyte detection in brain microdialysis samples. The portable system was then demonstrated for the detection of the same six amines in a rat brain microdialysis sample.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4875779 | PMC |
http://dx.doi.org/10.2116/analsci.32.35 | DOI Listing |
Capillary zone electrophoresis (CZE) is gaining attention in the field of single-cell proteomics for its ultra-low-flow and high-resolution separation abilities. Even more sample-limited yet rich in biological information are phosphoproteomics experiments, as the phosphoproteome composes only a fraction of the whole cellular proteome. Rapid analysis, high sensitivity, and maximization of sample utilization are paramount for single-cell analysis.
View Article and Find Full Text PDFMolecules
November 2024
Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8, HR-31000 Osijek, Croatia.
Amino acids (AAs) have broad nutritional, therapeutic, and medical significance and thus are one of the most common active ingredients of nutritional supplements. Analytical strategies for determining AAs are high-priced and often limited to methods that require modification of AA polarity or incorporation of an aromatic moiety. The aim of this work was to develop a new method for the determination of L-arginine, L-ornithine, and L-lysine on low-cost microchip electrophoresis instrumentation conjugated with capacitively coupled contactless conductivity detection.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China; Key Laboratory of Advanced Mass spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo, 315211, China.
B-complex vitamins are essential micronutrients that maintaining health, and provide (individually/simultaneously) many important biological actions in organism. Therefore, sensitive, reliable analytical method to determine B-complex vitamins simultaneously in actual samples is significant. Conventional analytical methods for vitamins analysis are usually labor-intensive, time-consuming and mostly do not allow the simultaneous determination.
View Article and Find Full Text PDFElectrophoresis
November 2024
Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic.
The review covering the development of capillary electrophoresis with capacitively coupled contactless conductivity detection from 2020 to 2024 is the latest in a series going back to 2004. The article considers applications employing conventional capillaries and planar lab-on-chip devices as well as fundamental and technical developments of the detector and complete electrophoresis instrumentation.
View Article and Find Full Text PDFPLoS One
November 2024
Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!