Autophagosomes are double-membrane vesicles that sequester cytoplasmic material for lysosomal degradation. Their biogenesis is initiated by recruitment of Atg9-vesicles to the phagophore assembly site. This process depends on the regulated activation of the Atg1-kinase complex. However, the underlying molecular mechanism remains unclear. Here we reconstitute this early step in autophagy from purified components in vitro. We find that on assembly from its cytoplasmic subcomplexes, the Atg1-kinase complex becomes activated, enabling it to recruit and tether Atg9-vesicles. The scaffolding protein Atg17 targets the Atg1-kinase complex to autophagic membranes by specifically recognizing the membrane protein Atg9. This interaction is inhibited by the two regulatory subunits Atg31 and Atg29. Engagement of the Atg1-Atg13 subcomplex restores the Atg9-binding and membrane-tethering activity of Atg17. Our data help to unravel the mechanism that controls Atg17-mediated tethering of Atg9-vesicles, providing the molecular basis to understand initiation of autophagosome-biogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729957 | PMC |
http://dx.doi.org/10.1038/ncomms10338 | DOI Listing |
J Mol Biol
January 2025
Instituto de Investigaciones Biomédicas CSIC-UAM 28029 Madrid, Spain. Electronic address:
A key step in autophagy is the conjugation by the E3-like Atg12-Atg5-Atg16 complex of the ubiquitin-like protein Atg8 to phosphatidylethanolamine on the autophagosomal membrane, a process known as lipidation. Previous work in yeast showed that recruitment of the E3-like complex to the preautophagosomal structure is mediated by the interaction of Atg16 with the phosphatidylinositol 3-phosphate-binding protein Atg21, and by the association of Atg12 with the scaffold protein of the Atg1 kinase complex, Atg17. Here, we conducted a reverse two-hybrid screen to identify residues in Atg17 and Atg12 critical for Atg17-Atg12 binding, and used these data to generate a docking model of Atg12-Atg5-Atg16 with the Atg17 complex.
View Article and Find Full Text PDFEMBO Rep
February 2024
Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
Autophagy is initiated by the assembly of multiple autophagy-related proteins that form the phagophore assembly site where autophagosomes are formed. Atg13 is essential early in this process, and a hub of extensive phosphorylation. How these multiple phosphorylations contribute to autophagy initiation, however, is not well understood.
View Article and Find Full Text PDFCell Rep
September 2023
Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA. Electronic address:
In yeast meiosis, autophagy is active and essential. Here, we investigate the fate of Rim4, a meiosis-specific RNA-binding protein (RBP), and its associated transcripts during meiotic autophagy. We demonstrate that Rim4 employs a nuclear localization signal (NLS) to enter the nucleus, where it loads its mRNA substrates before nuclear export.
View Article and Find Full Text PDFPlant Physiol
October 2023
Department of Systems Biology, Yonsei University, Seoul 03722, Korea.
Autophagy serves as an important recycling route for the growth and survival of eukaryotic organisms in nutrient-deficient conditions. Since starvation induces massive changes in the metabolic flux that are coordinated by key metabolic enzymes, specific processing steps of autophagy may be linked with metabolic flux-monitoring enzymes. We attempted to identify carbon metabolic genes that modulate autophagy using VIGS screening of 45 glycolysis- and Calvin-Benson cycle-related genes in Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDFJ Cell Biol
August 2023
Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
In macroautophagy, cellular components are sequestered within autophagosomes and transported to lysosomes/vacuoles for degradation. Although phosphatidylinositol 3-kinase complex I (PI3KCI) plays a pivotal role in the regulation of autophagosome biogenesis, little is known about how this complex localizes to the pre-autophagosomal structure (PAS). In Saccharomyces cerevisiae, PI3KCI is composed of PI3K Vps34 and conserved subunits Vps15, Vps30, Atg14, and Atg38.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!