Collaborative Classroom Simulation (CCS) is a pedagogy designed to provide a simulation learning experience for a classroom of students simultaneously through the use of unfolding case scenarios. The purpose of this descriptive study was to explore the effectiveness of CCS based on student perceptions. Baccalaureate nursing students (n = 98) participated in the study by completing a survey after participation in the CCS experience. Opportunities for collaboration, clinical judgment, and participation as both observer and active participant were seen as strengths of the experience. Developed as a method to overcome barriers to simulation, CCS was shown to be an effective active learning technique that may prove to be sustainable.

Download full-text PDF

Source
http://dx.doi.org/10.5480/14-1420DOI Listing

Publication Analysis

Top Keywords

simulation ccs
12
collaborative classroom
8
classroom simulation
8
simulation
5
ccs
5
ccs innovative
4
innovative pedagogy
4
pedagogy simulation
4
simulation nursing
4
nursing education
4

Similar Publications

In this contribution, a methodology for the optimal tuning of controllers of complex systems based on meta-heuristic techniques is proposed. Two bio-inspired meta-heuristic optimization algorithms -the Antlion Optimizer (ALO) and the Whale Optimization Algorithm (WOA)- have been applied to two different dynamic systems: the Hoop & Ball electromechanical system, a system where a linearized description is adequate; and to a Wind Turbine-Generator-Rectifier, as an example of a complex non-linear dynamic system. The performance of the ALO and WOA techniques for the tuning of conventional PID controllers is evaluated in relation to the number of agents nS and the maximum number of iterations nMaxIter; given the stochastic nature of both methods, repeatability is also addressed.

View Article and Find Full Text PDF

Packed columns are commonly used in post-combustion processes to capture CO emissions by providing enhanced contact area between a CO-laden gas and CO-absorbing solvent. To study and optimize solvent-based post-combustion carbon capture systems (CCSs), computational fluid dynamics (CFD) can be used to model the liquid-gas countercurrent flow hydrodynamics in these columns and derive key determinants of CO-capture efficiency. However, the large design space of these systems hinders the application of CFD for design optimization due to its high computational cost.

View Article and Find Full Text PDF

Atomically precise nanoclusters (NCs) are promising building blocks for designing materials and interfaces with unique properties. By incorporating heteroatoms into the core, the electronic and magnetic properties of NCs can be precisely tuned. To accurately predict these properties, density functional theory (DFT) is often employed, making the rigorous benchmarking of DFT results particularly important.

View Article and Find Full Text PDF

Anthropogenic carbon dioxide emissions have been increasing rapidly in recent years, driving pH and oxygen levels to record low concentrations in the oceans. Eastern boundary upwelling systems such as the California Current System (CCS) experience exacerbated ocean acidification and hypoxia (OAH) due to the physical and chemical properties of the transported deeper waters. Research efforts have significantly increased in recent years to investigate the deleterious effects of climate change on marine species, but have not focused on the impacts of simultaneous OAH stressor exposure.

View Article and Find Full Text PDF

Background: Multiple myeloma (MM) clinical management is challenging owing to its relapse and refractoriness to treatment. Understanding the treatment patterns and refractory dynamics is crucial for optimizing patient care. This study aimed to estimate the evolution of MM according to the treatment line and refractoriness status in Italy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!