Setaria Beauvois, 1812 is a genus of economically important forage species, including Setaria italica (Linnaeus, 1753) Beauvois, 1812 and Setaria viridis (Linnaeus, 1753) Beauvois, 1812, closely related species and considered as model systems for studies of C4 plants. However, complications and uncertainties related to taxonomy of other species of the genus are frequent due to the existence of numerous synonyms for the same species or multiple species with the same name, and overlapping of morphological characteristics. Cytogenetic studies in Setaria can be useful for taxonomic and evolutionary studies as well as for applications in breeding. Thus, this study is aimed at locating 45S and 5S rDNA sites through fluorescent in situ hybridization (FISH) in Setaria italica, Setaria viridis and Setaria sphacelata (Schumacher, 1827) Stapf, Hubbard, Moss, 1929 cultivars (cvs.) Narok and Nandi. Setaria italica and Setaria viridis have 18 chromosomes with karyotype formulas 6m + 3sm and 9m, respectively. The location of 45S and 5S rDNA for these species was in different chromosome pairs among the evaluated species. Setaria viridis presented a more symmetrical karyotype, strengthening the ancestral relationship with Setaria italica. Setaria sphacelata cvs. Narok and Nandi have 36 chromosomes, and karyotype formulas 11m+7sm and 16m+2sm, respectively. The 45S rDNA signals for both cultivars were also observed in distinct chromosome pairs; however chromosomes bearing 5S rDNA are conserved. Karyotypic variations found among the studied species are evidence of chromosomal rearrangements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698577PMC
http://dx.doi.org/10.3897/CompCytogen.v9i4.5456DOI Listing

Publication Analysis

Top Keywords

setaria italica
16
setaria viridis
16
setaria
13
beauvois 1812
12
45s rdna
12
italica setaria
12
species
9
linnaeus 1753
8
1753 beauvois
8
setaria sphacelata
8

Similar Publications

Repetitive DNA contributes significantly to plant genome size, adaptation, and evolution. However, little is understood about the transcription of repeats. This is addressed here in the plant green foxtail millet (Setaria viridis).

View Article and Find Full Text PDF

Translating biological knowledge from Arabidopsis to crop species is important to advance agriculture and secure food production in the face of dwindling fertilizer resources and biotic and abiotic stresses. However, it is often not trivial to identify functional homologs (orthologs) of Arabidopsis genes in crops. Combining sequence and expression data can improve the correct prediction of orthologs.

View Article and Find Full Text PDF

Many C4 plants are used as food and fodder crops and often display improved resource use efficiency compared to C3 plants. However, the response of C4 plants to future extreme conditions such as heatwaves is less understood. Here, Setaria viridis, an emerging C4 model grass, was grown under long-term high temperature stress for two weeks (42°C, compared to 28°C).

View Article and Find Full Text PDF

Foxtail millet (Setaria italica L.) is nutritionally superior to other cereals of the family Poaceae, with the potential to perform better in marginal environments. In the present context of climate change, ecologically sound and low-input foxtail millet varieties can be chosen for agricultural sustainability.

View Article and Find Full Text PDF

Backgrounds: Adapter proteins (APs) complex is a class of heterotetrameric complexes comprising of 4-subunits with important regulatory functions in eukaryotic cell membrane vesicle trafficking. Foxtail millet (Setaria italica L.) is a significant C model plant for monocotyledon studies, and vesicle trafficking may plays a crucial role in various life activities related to growth and development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!