We report the first comprehensive structure-activity study of calindol (4, (R)-N-[(1H-indol-2-yl)methyl]-1-(1-naphthyl)ethanamine), a positive allosteric modulator, or calcimimetic, of the calcium sensing receptor (CaSR). While replacement of the naphthyl moiety of calindol by other aromatic groups (phenyl, biphenyl) was largely detrimental to calcimimetic activity, incorporation of substituents on the 4, 5 or 7 position of the indole portion of calindol was found to provide either equipotent derivatives compared to calindol (e.g., 4-phenyl, 4-hydroxy, 5-hydroxycalindol 44, 52, 53) or, in the case of 7-nitrocalindol (51), a 6-fold more active calcimimetic displaying an EC50 of 20nM. Unlike calindol, the more active CaSR calcimimetics were shown not to act as antagonists of the closely related GPRC6A receptor, suggesting a more selective profile for these new analogues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2015.12.019 | DOI Listing |
Physiol Rev
January 2025
Department of Physiology and Membrane Biology, University of California, Davis, School of Medicine, Davis CA, 95616, USA.
Biology uses many signaling mechanisms. Among them, calcium and membrane potential are two prominent mediators for cellular signaling. TRPM4 and TRPM5, two calcium-activated monovalent cation-conducting ion channels, offer a direct linkage between these two signals.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China.
Porous piezoelectric materials have attracted much interest in the fields of sensing and energy harvesting owing to their low dielectric constant, high piezoelectric voltage coefficient, and energy harvesting figure of merit. However, the introduction of porosity can decrease the piezoelectric coefficient, which restricts the enhancement of output current and power density. Herein, to overcome these challenges, an array-structured piezoelectric composite energy harvester with aligned porosity was constructed via a dual structure design strategy to enhance the output current and power density.
View Article and Find Full Text PDFBiophys Physicobiol
September 2024
Department of Cell Biology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
Visceral organs in vertebrates are arranged with left-right asymmetry; for example, the heart is located on the left side of the body. Cilia at the node of mouse early embryos play an essential role in determining this left-right asymmetry. Using information from the anteroposterior axis, motile cilia at the central region of the node generate leftward nodal flow.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390.
Neurotransmitter release is triggered in microseconds by Ca-binding to the Synaptotagmin-1 C-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 CB domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca-binding loops away from the fusion site, hindering these putative activities.
View Article and Find Full Text PDFJ Pediatr Urol
December 2024
Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt. Electronic address:
Backgrounds: The pathophysiology of nephrolithiasis is complex, influenced by both environmental and genetic factors. Calcium is the most prevalent metabolite present in the stone matrix. Stimulating the basolateral calcium sensing receptor (CASR) in the renal tubules leads to an increase in claudin-14 expression, reducing paracellular calcium permeability and increasing urinary Ca excretion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!