Mutations in the LRP4 gene, coding for a Wnt signaling coreceptor, have been found to cause several allelic conditions. Among these, two are characterized by a strong skeletal involvement, namely sclerosteosis and Cenani-Lenz syndrome. In this work, we evaluated the role of LRP4 in the pathophysiology of these diseases. First, we report a novel LRP4 mutation, leading to the substitution of arginine at position 1170 in glutamine, identified in a patient with sclerosteosis. This mutation is located in the central cavity of the third β-propeller domain, which is in line with two other sclerosteosis mutations we previously described. Reporter assays demonstrate that this mutation leads to impaired sclerostin inhibition of Wnt signaling. Moreover, we compared the effect of this novel variant to mutations causing Cenani-Lenz syndrome and show that impaired membrane trafficking of the LRP4 protein is the likely mechanism underlying Cenani-Lenz syndrome. This is in contrast to sclerosteosis mutations, previously shown to impair the binding between LRP4 and sclerostin. In addition, to better understand the biology of LRP4, we investigated the circulating sclerostin levels in the serum of a patient suffering from sclerosteosis owing to a LRP4 mutation. We demonstrate that impaired sclerostin binding to the mutated LRP4 protein leads to dramatic increase in circulating sclerostin in this patient. With this study, we provide the first evidence suggesting that LRP4 is responsible for the retention of sclerostin in the bone environment in humans. These findings raise potential concerns about the utility of determining circulating sclerostin levels as a marker for other bone-related parameters. Although more studies are needed to fully understand the mechanism whereby LRP4 facilitates sclerostin action, it is clear that this protein represents a potent target for future osteoporosis therapies and an interesting alternative for the antisclerostin treatment currently under study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbmr.2782 | DOI Listing |
Eur J Med Genet
February 2024
Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman; Department of Genetics, Sultan Qaboos University Hospital, Muscat, Oman. Electronic address:
LRP4 is expressed in many organs. It mediates SOST-dependent inhibition of bone formation and acts as an inhibitor of WNT signaling. It is also a postsynaptic end plate cell surface receptor at the neuromuscular junction and is central to its development, maintenance, and function.
View Article and Find Full Text PDFMol Genet Genomic Med
January 2024
Medical Genetic Center, The Affiliated Yancheng Maternity & Child Health Hospital of Yangzhou University Medical School, Yancheng, China.
Background: Cenani-Lenzsyndactyly syndrome (CLSS; OMIM 212780) is a rare autosomal recessive acral deformity, which is mainly manifested in the fusion of fingers or toes, disordered phalangeal structure, shortening or fusion of the radius and ulna, and renal hypoplasia.
Case Presentation: Our report described an individual with mild phenotypes from China. His parents were not consanguineous.
Sci Rep
August 2023
INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France.
Congenital myasthenic syndromes (CMS) are a clinically and genetically heterogeneous group of rare diseases due to mutations in neuromuscular junction (NMJ) protein-coding genes. Until now, many mutations encoding postsynaptic proteins as Agrin, MuSK and LRP4 have been identified as responsible for increasingly complex CMS phenotypes. The majority of mutations identified in LRP4 gene causes bone diseases including CLS and sclerosteosis-2 and rare cases of CMS with mutations in LRP4 gene has been described so far.
View Article and Find Full Text PDFJ Hum Genet
May 2022
Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
Cenani-Lenz syndrome (CLS) is a rare autosomal-recessive congenital disorder affecting development of distal limbs. It is characterized mainly by syndactyly and/or oligodactyly, renal anomalies, and characteristic facial features. Mutations in the LRP4 gene, located on human chromosome 11p11.
View Article and Find Full Text PDFAm J Med Genet A
February 2021
Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Center, Cochin, India.
Cenani Lenz syndrome is a rare autosomal recessive disorder associated with variable degree of limb malformations, dysmorphism, and renal agenesis. It is caused due to pathogenic variants in the LRP4 gene, which plays an important role in limb and renal development. Mutations in the APC gene have also been occasionally associated with CLS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!