Pectin is found in the cell wall of plants and is often discarded as waste. A number of research groups are interested in redirecting this biomass waste stream for the production of fuel and bulk chemicals. The primary monomeric subunit of this polysaccharide is D-galacturonate, a six-carbon acid sugar that is degraded in a five-step pathway to central metabolic intermediates by some bacteria, including Agrobacterium tumefaciens. In the third step of the pathway, D-galactaro-1,4-lactone is converted to 2-keto-3-deoxy-L-threo-hexarate by a member of the mandelate racemase subgroup of the enolase superfamily with a novel activity for the superfamily. The 1.6 Å resolution structure of this enzyme was determined, revealing an overall modified (β/α)7β TIM-barrel domain, a hallmark of the superfamily. D-Galactaro-1,4-lactone was manually docked into the active site located at the interface between the N-terminal lid domain and the C-terminal barrel domain. On the basis of the position of the lactone in the active site, Lys166 is predicted to be the active-site base responsible for abstraction of the α proton. His296 on the opposite side of the active site is predicted to be the general acid that donates a proton to the β carbon as the lactone ring opens. The lactone ring appears to be oriented within the active site by stacking interactions with Trp298.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4708048PMC
http://dx.doi.org/10.1107/S2053230X15023286DOI Listing

Publication Analysis

Top Keywords

active site
16
agrobacterium tumefaciens
8
lactone ring
8
purification crystallization
4
crystallization structural
4
structural elucidation
4
elucidation d-galactaro-14-lactone
4
d-galactaro-14-lactone cycloisomerase
4
cycloisomerase agrobacterium
4
tumefaciens involved
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!