In higher plants, photosystem II (PSII) is a multi-subunit pigment-protein complex embedded in the thylakoid membranes of chloroplasts, where it is present mostly in dimeric form within the grana. Its light-harvesting antenna system, LHCII, is composed of trimeric and monomeric complexes, which can associate in variable number with the dimeric PSII core complex in order to form different types of PSII-LHCII supercomplexes. Moreover, PSII-LHCII supercomplexes can laterally associate within the thylakoid membrane plane, thus forming higher molecular mass complexes, termed PSII-LHCII megacomplexes (Boekema et al. 1999a, in Biochemistry 38:2233-2239; Boekema et al. 1999b, in Eur J Biochem 266:444-452). In this study, pure PSII-LHCII megacomplexes were directly isolated from stacked pea thylakoid membranes by a rapid single-step solubilization, using the detergent n-dodecyl-α-D-maltoside, followed by sucrose gradient ultracentrifugation. The megacomplexes were subjected to biochemical and structural analyses. Transmission electron microscopy on negatively stained samples, followed by single-particle analyses, revealed a novel form of PSII-LHCII megacomplexes, as compared to previous studies (Boekema et al.1999a, in Biochemistry 38:2233-2239; Boekema et al. 1999b, in Eur J Biochem 266:444-452), consisting of two PSII-LHCII supercomplexes sitting side-by-side in the membrane plane, sandwiched together with a second copy. This second copy of the megacomplex is most likely derived from the opposite membrane of a granal stack. Two predominant forms of intact sandwiched megacomplexes were observed and termed, according to (Dekker and Boekema 2005 Biochim Biophys Acta 1706:12-39), as (CS) and (CS + CSM) megacomplexes. By applying a gel-based proteomic approach, the protein composition of the isolated megacomplexes was fully characterized. In summary, the new structural forms of isolated megacomplexes and the related modeling performed provide novel insights into how PSII-LHCII supercomplexes may bind to each other, not only in the membrane plane, but also between granal stacks within the chloroplast.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11120-016-0216-3DOI Listing

Publication Analysis

Top Keywords

psii-lhcii megacomplexes
16
psii-lhcii supercomplexes
16
membrane plane
12
megacomplexes
9
psii-lhcii
8
electron microscopy
8
thylakoid membranes
8
biochemistry 382233-2239
8
382233-2239 boekema
8
boekema 1999b
8

Similar Publications

Photosystem II (PSII) splits water in oxygenic photosynthesis on Earth. The structure and function of the CSM-type PSII-LHCII (light-harvesting complex II) megacomplexes from the wild-type and PsbR-deletion mutant plants are studied through electron microscopy (EM), structural mass spectrometry, and ultrafast fluorescence spectroscopy [time-resolved fluorescence (TRF)]. The cryo-EM structure of a type I CSM megacomplex demonstrates that the three domains of PsbR bind to the stromal side of D1, D2, and CP43; associate with the single transmembrane helix of the redox active Cyt ; and stabilize the luminal extrinsic PsbP, respectively.

View Article and Find Full Text PDF

Formation of a Stable PSI-PSII Megacomplex in Rice That Conducts Energy Spillover.

Plant Cell Physiol

August 2023

Division of Environmental Photobiology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji Okazaki, Aichi, 444-8585 Japan.

In green plants, photosystem I (PSI) and photosystem II (PSII) bind to their respective light-harvesting complexes (LHCI and LHCII) to form the PSI-LHCI supercomplex and the PSII-LHCII supercomplex, respectively. These supercomplexes further form megacomplexes, like PSI-PSII and PSII-PSII in Arabidopsis (Arabidopsis thaliana) and spinach to modulate their light-harvesting properties, but not in the green alga Chlamydomonas reinhardtii. Here, we fractionated and characterized the stable rice PSI-PSII megacomplex.

View Article and Find Full Text PDF

Land plants evolved from a single group of streptophyte algae. One of the key factors needed for adaptation to a land environment is the modification in the peripheral antenna systems of photosystems (PSs). Here, the PSs of Mesostigma viride, one of the earliest-branching streptophyte algae, were analyzed to gain insight into their evolution.

View Article and Find Full Text PDF

Effect of light on the rearrangements of PSI super-and megacomplexes in the non-appressed thylakoid domains of maize mesophyll chloroplasts.

Plant Sci

December 2020

Department of Molecular Plant Physiology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02096 Warsaw, Poland. Electronic address:

We demonstrated the existence of PSI-LHCI-LHCII-Lhcb4 supercomplexes and PSI-LHCI-PSII-LHCII megacomplexes in the stroma lamellae and grana margins of maize mesophyll chloroplasts; these complexes consist of different LHCII trimers and monomer antenna proteins per PSI photocentre. These complexes are formed in both low (LL) and high (HL) light growth conditions, but with different contents. We attempted to identify the components and structure of these complexes in maize chloroplasts isolated from the leaves of low and high light-grown plants after darkness and transition to far red (FR) light of high intensity.

View Article and Find Full Text PDF

Multimeric and monomeric photosystem II supercomplexes represent structural adaptations to low- and high-light conditions.

J Biol Chem

October 2020

Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan. Electronic address:

An intriguing molecular architecture called the "semi-crystalline photosystem II (PSII) array" has been observed in the thylakoid membranes in vascular plants. It is an array of PSII-light-harvesting complex II (LHCII) supercomplexes that only appears in low light, but its functional role has not been clarified. Here, we identified PSII-LHCII supercomplexes in their monomeric and multimeric forms in low light-acclimated spinach leaves and prepared them using sucrose-density gradient ultracentrifugation in the presence of amphipol A8-35.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!