In present study, the beneficial effect of corncob acid hydrolysate environment on lipid fermentation of Trichosporon dermatis was elucidated by method of cell biology (mainly using flow cytometry and microscope) for the first time. Propidium iodide (PI) and rhodamine 123 (Rh123) staining showed that corncob acid hydrolysate environment was favorable for the cell membrane integrity and mitochondrial membrane potential of T. dermatis and thus made its lipid fermentation more efficient. Nile red (NR) staining showed that corncob acid hydrolysate environment made the lipid accumulation of T. dermatis slower, but this influence was not serious. Moreover, the cell morphology of T. dermatis elongated in the corncob acid hydrolysate, but the cell morphology changed as elliptical-like during fermentation. Overall, this work offers one simple and effective method to evaluate the influence of lignocellulosic hydrolysates environment on lipid fermentation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-015-1956-9 | DOI Listing |
Int J Biol Macromol
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest, Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China. Electronic address:
This study investigates the mixing effects on the enzymatic hydrolysis of microcrystalline cellulose (MCC) and dilute-acid pretreated corncob substrates under high-solid conditions. Enzymatic hydrolysis experiments were conducted to assess cellulose conversion rates under varying mixing conditions (0, 50, 150, and 250 rpm) and solids loadings (5 %, 15 %, 25 %, and 35 %, w/v), and distinct physicochemical properties of the substrates were characterized. Additionally, the role of mixing conditions and solid loadings on cellulose hydrolysis kinetics and enzyme adsorption on both substrates and lignin were elucidated.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:
Two distinctive aromatic units, p - coumarate and ferulate, exist in corncob lignin, which have the potential to yield p - coumaric acid (pCA) and ferulic acid (FA). Although pCA and FA are primarily extracted from corncob lignin utilizing strong acids and bases, extremely acidic or alkaline conditions result in the disruption of the aromatic unit structure of the residual lignin. Herein, lactic acid coupled with choline chloride was utilized as acidic deep eutectic solvent (DES), while KCO with glycerin was used as alkaline DES, thereby facilitating the extraction of pCA, FA and lignin from corncob in a mild environment.
View Article and Find Full Text PDFMicrob Cell Fact
December 2024
College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China.
Nat Commun
November 2024
State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, China.
Bioresour Technol
November 2024
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Biobased Transport Fuel Technology, Zhengzhou 450001, China. Electronic address:
Furfural (FUR) and levulinic acid (LA) are promising biobased platform chemicals that can be converted into value-added chemicals. An integrated biorefinery process is applied to FUR and LA production from corncob for efficient feedstock and energy utilization. Here, a techno-economic analysis of the integrated process of FUR and LA production was performed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!