Virtual Screening and Experimental Validation Identify Novel Inhibitors of the Plasmodium falciparum Atg8-Atg3 Protein-Protein Interaction.

ChemMedChem

Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health and, Johns Hopkins Malaria Research Institute, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.

Published: April 2016

New therapies are needed against malaria, a parasitic infection caused by Plasmodium falciparum, as drug resistance emerges against the current treatment, artemisinin. We previously characterized the Atg8-Atg3 protein-protein interaction (PPI), which is essential for autophagy and parasite survival. Herein we illustrate the use of virtual library screening to selectively block the PPI in the parasite without inhibiting the homologous interaction in humans by targeting the A-loop of PfAtg8. This A-loop is important for Atg3 binding in Plasmodium, but is absent from the human Atg8 homologues. In this proof-of-concept study, we demonstrate a shift in lipidation state of PfAtg8 and inhibition of P. falciparum growth in both blood- and liver-stage cultures upon drug treatment. Our results illustrate how in silico screening and structure-aided drug design against a PPI can be used to identify new hits for drug development. Additionally, as we targeted a region of Atg8 that is conserved within apicomplexans, we predict that our small molecule will have cross-reactivity against other disease-causing apicomplexans, such as Toxoplasma, Cryptosporidium, Theileria, Neospora, Eimeria, and Babesia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8614111PMC
http://dx.doi.org/10.1002/cmdc.201500515DOI Listing

Publication Analysis

Top Keywords

plasmodium falciparum
8
atg8-atg3 protein-protein
8
protein-protein interaction
8
virtual screening
4
screening experimental
4
experimental validation
4
validation identify
4
identify novel
4
novel inhibitors
4
inhibitors plasmodium
4

Similar Publications

Background: In moderate-to-high malaria transmission regions, the World Health Organization recommends intermittent preventive treatment in pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) alongside insecticide-treated bed nets to reduce the adverse consequences of pregnancy-associated malaria. Due to high-grade Plasmodium falciparum resistance to SP, novel treatment regimens need to be evaluated for IPTp, but these increase pill burden and treatment days. The present qualitative study assessed the acceptability of IPTp-SP plus dihydroartemisinin-piperaquine (DP) in Papua New Guinea, where IPTp-SP was implemented in 2009.

View Article and Find Full Text PDF

The clinical development of novel vaccines, injectable therapeutics, and oral chemoprevention drugs has the potential to deliver significant advancements in the prevention of Plasmodium falciparum malaria. These innovations could support regions in accelerating malaria control, transforming existing intervention packages by supplementing interventions with imperfect effectiveness or offering an entirely new tool. However, to layer new medical tools as part of an existing programme, malaria researchers must come to an agreement on the gaps that currently limit the effectiveness of medical interventions for moderate to low transmission settings.

View Article and Find Full Text PDF

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a diverse family of variant surface antigens, encoded by var genes, that mediates binding of infected erythrocytes to human cells and plays a key role in parasite immune evasion and malaria pathology. The increased availability of parasite genome sequence data has revolutionised the study of PfEMP1 diversity across multiple P. falciparum isolates.

View Article and Find Full Text PDF

Placental malaria is characterized by the massive accumulation and sequestration of infected erythrocytes in the placental intervillous blood spaces, causing severe birth outcomes. The variant surface antigen VAR2CSA is associated with Plasmodium falciparum sequestration in the placenta via its capacity to adhere to chondroitin sulfate A. We have previously shown that the extracellular region of VAR2CSA is phosphorylated on several residues and that the phosphorylation enhances the adhesive properties of CSA-binding infected erythrocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!