5-Hz Transcranial Magnetic Stimulation for Comorbid Posttraumatic Stress Disorder and Major Depression.

J Trauma Stress

Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA.

Published: February 2016

AI Article Synopsis

  • Current PTSD treatments show limited effectiveness, highlighting the need for new options.
  • Repetitive transcranial magnetic stimulation (rTMS) at 5 Hz may be effective for treating both PTSD and comorbid major depressive disorder (MDD).
  • A study with 10 patients at the Providence VA found significant symptom reduction and good tolerance to the treatment, suggesting further research is needed to validate these promising results.

Article Abstract

Current treatment options for posttraumatic stress disorder (PTSD) offer modest benefits, underscoring the need for new treatments. Repetitive transcranial magnetic stimulation (rTMS) depolarizes neurons in a targeted brain region with magnetic fields typically pulsed at low (1 Hz) or high (10 Hz) frequency to relieve major depressive disorder (MDD). Prior work suggests an intermediate pulse frequency, 5 Hz, is also efficacious for treating comorbid depressive and anxiety symptoms. In this chart review study, we systematically examined the clinical and safety outcomes in 10 patients with comorbid MDD and PTSD syndromes who received 5-Hz rTMS therapy at the Providence VA Medical Center Neuromodulation Clinic. Self-report scales measured illness severity prior to treatment, after every 5 treatments, and upon completion of treatment. Results showed significant reduction in symptoms of PTSD (p = .003, effect size = 1.12, 8/10 with reliable change) and MDD (p = .005, effect size = 1.09, 6/10 with reliable change). Stimulation was well tolerated and there were no serious adverse events. These data indicate 5-Hz rTMS may be a useful option to treat these comorbid disorders. Larger, controlled trials are needed to confirm the benefits of 5-Hz protocols observed in this pilot study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4849266PMC
http://dx.doi.org/10.1002/jts.22065DOI Listing

Publication Analysis

Top Keywords

transcranial magnetic
8
magnetic stimulation
8
posttraumatic stress
8
stress disorder
8
5-hz rtms
8
reliable change
8
5-hz
4
5-hz transcranial
4
comorbid
4
stimulation comorbid
4

Similar Publications

Adult neurogenesis has most often been studied in the hippocampus and subventricular zone-olfactory bulb, where newborn neurons contribute to a variety of behaviors. A handful of studies have also investigated adult neurogenesis in other brain regions, but relatively little is known about the properties of neurons added to non-canonical areas. One such region is the striatum.

View Article and Find Full Text PDF

Pudendal Neuralgia: A Review of the Current Literature.

Curr Pain Headache Rep

January 2025

Department of Anesthesia, Division of Pain Medicine, University of Virginia, Charlottesville, VA, USA.

Purpose Of Review: This paper aims to review pudendal neuralgia pathophysiology, risk factors, diagnosis, and treatment options.

Recent Findings: Conservative and pharmacologic options are first line treatments for the treatment of pudendal neuralgia. Interventional treatment such as, pudendal nerve blocks can be tried if first line treatments feel to provide adequate analgesia.

View Article and Find Full Text PDF

Humans adjust their movement to changing environments effortlessly via multisensory integration of the effector's state, motor commands, and sensory feedback. It is postulated that frontoparietal (FP) networks are involved in the control of prehension, with dorsomedial (DM) and dorsolateral (DL) regions processing the reach and the grasp, respectively. This study tested (5F, 5M participants) the differential involvement of FP nodes (ventral premotor cortex - PMv, dorsal premotor cortex - PMd, anterior intraparietal sulcus - aIPS, and anterior superior parietal-occipital cortex - aSPOC) in online adjustments of reach-to-grasp coordination to mechanical perturbations that disrupted arm transport.

View Article and Find Full Text PDF

How the prefrontal cortex contributes to working memory remains controversial, as theories differ in their emphasis on its role in storing memories versus controlling their content. To adjudicate between these competing ideas, we tested how perturbations to the human (both sexes) lateral prefrontal cortex impact the storage and control aspects of working memory during a task that requires human subjects to allocate resources to memory items based on their behavioral priority. Our computational model made a strong prediction that disruption of this control process would counterintuitively improve memory for low-priority items.

View Article and Find Full Text PDF

rTMS improves cognitive function and its real-time and cumulative effect on neuronal excitability in aged mice.

Brain Res

January 2025

Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic & Information Engineering, Hebei University, Baoding, Hebei 071002, PR China. Electronic address:

Repetitive transcranial magnetic stimulation (rTMS) is acknowledged for its critical role in modulating neuronal excitability and enhancing cognitive function. The dentate gyrus of the hippocampus is closely linked to cognitive processes; however, the precise mechanisms by which changes in its excitability influence cognition are not yet fully understood. This study aimed to elucidate the effects on granule cell excitability and the effects on cognition of high-frequency rTMS in naturally aging mice, as well as to investigate the potential interactions between these two factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!