Cardiac induction requires stepwise integration of BMP and WNT pathway activity. Human embryonic stem cells (hESCs) are developmentally and clinically relevant for studying the poorly understood molecular mechanisms downstream of these cascades. We show that BMP and WNT signaling drive cardiac specification by removing sequential roadblocks that otherwise redirect hESC differentiation toward competing fates, rather than activating a cardiac program per se. First, BMP and WNT signals pattern mesendoderm through cooperative repression of SOX2, a potent mesoderm antagonist. BMP signaling promotes miRNA-877 maturation to induce SOX2 mRNA degradation, while WNT-driven EOMES induction transcriptionally represses SOX2. Following mesoderm formation, cardiac differentiation requires inhibition of WNT activity. We found that WNT inhibition serves to restrict expression of anti-cardiac regulators MSX1 and CDX2/1. Conversely, their simultaneous disruption partially abrogates the requirement for WNT inactivation. These results suggest that human cardiac induction depends on multi-stage repression of alternate lineages, with implications for deriving expandable cardiac stem cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.stem.2015.11.019DOI Listing

Publication Analysis

Top Keywords

cardiac induction
12
bmp wnt
12
stem cells
8
cardiac
7
wnt
6
stepwise clearance
4
clearance repressive
4
repressive roadblocks
4
roadblocks drives
4
drives cardiac
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!