Manipulation of Neurotransmitter Levels Has Differential Effects on Formalin-Evoked Nociceptive Behavior in Male and Female Mice.

J Pain

Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada; Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada. Electronic address:

Published: April 2016

Unlabelled: Changes in serotonin (5-hydroxytryptamine; 5-HT), noradrenaline (NA), and γ-aminobutyric acid (GABA) levels in the spinal cord are known to occur in response to nociceptive stimuli, yet little research has examined possible underlying sex differences in these changes and how they might affect nociception. We have used pharmacological approaches in a well established model of tonic nociception, the formalin test, to explore the effects of altering neurotransmitter levels on nociceptive responses in male and female C57BL/6 mice. The monoamine oxidase (MAO) inhibitor phenelzine (PLZ), its metabolite phenylethylidenehydrazine (PEH), and a derivative compound of PLZ, N(2)-acetylphenelzine (N(2)-AcPLZ), were used to increase endogenous levels of: GABA, 5-HT, and NA (PLZ); GABA alone (PEH); or 5-HT and NA only (N(2)-AcPLZ). Although both sexes had a reduction in second phase nociceptive behaviors with PEH pretreatment, the analgesic effect of PLZ was only observed in male mice. High performance liquid chromatography analysis revealed male mice had greater spinal cord increases in 5-HT and NA levels compared with female mice. Female mice, in contrast, had greater increases in GABA levels with pretreatments. With N(2)-AcPLZ pretreatment, only male mice had a reduction in second phase nociceptive behaviors despite similar increases in 5-HT and NA levels in both sexes. These findings suggest that male mice may utilize serotonergic and noradrenergic pathways more efficiently for the attenuation of nociceptive behavior and female mice are more dependent on alternate mechanisms. To our knowledge, these findings are the first on the antinociceptive properties of altering 5-HT, NA, and GABA levels with the MAO inhibitor PLZ and its derivatives in a model of tonic pain processing. They also reveal significant underlying sex differences associated with these treatments.

Perspective: The present study found that nociception in male and female mice may be regulated by different neurotransmitter systems. These results indicate that different pharmacological approaches may be needed to treat pain in both sexes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpain.2015.12.013DOI Listing

Publication Analysis

Top Keywords

male mice
16
female mice
16
gaba levels
12
mice
10
levels
8
neurotransmitter levels
8
nociceptive behavior
8
spinal cord
8
underlying sex
8
sex differences
8

Similar Publications

Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.

View Article and Find Full Text PDF

Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) is a fatal disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To date, several vaccines have been developed to combat the spread of this virus. Mucosal vaccines using food-grade bacteria, such as Lactobacillus spp.

View Article and Find Full Text PDF

Transcriptional regulation of the piRNA pathway by Ovo in animal ovarian germ cells.

Genes Dev

December 2024

Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom

The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells.

View Article and Find Full Text PDF

Background: A decline in skeletal muscle mass and function known as skeletal muscle sarcopenia is an inevitable consequence of aging. Sarcopenia is a major cause of decreased muscle strength, physical frailty and increased muscle fatigability, contributing significantly to an increased risk of physical disability and functional dependence among the elderly. There remains a significant need for a novel therapy that can improve sarcopenia and related problems in aging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!