Baroreflex regulation of blood pressure is important for maintaining appropriate tissue perfusion. Although temperature affects heart rate (fH) reflex regulation in some reptiles and toads, no data are available on the influence of temperature-independent metabolic states on baroreflex. The South American tegu lizard Salvator merianae exhibits a clear seasonal cycle of activity decreasing fH along with winter metabolic downregulation, independent of body temperature. Through pharmacological interventions (phenylephrine and sodium nitroprusside), the baroreflex control of fH was studied at ∼ 25 °C in spring-summer- and winter-acclimated tegus. In winter lizards, resting and minimum fH were lower than in spring-summer animals (respectively, 13.3 ± 0.82 versus 10.3 ± 0.81 and 11.2 ± 0.65 versus 7.97 ± 0.88 beats min(-1)), while no acclimation differences occurred in resting blood pressure (5.14 ± 0.38 versus 5.06 ± 0.56 kPa), baroreflex gain (94.3 ± 10.7 versus 138.7 ± 30.3% kPa(-1)) or rate-pressure product (an index of myocardial activity). Vagal tone exceeded the sympathetic tone of fH, especially in the winter group. Therefore, despite the lower fH, winter acclimation does not diminish the fH baroreflex responses or rate-pressure product, possibly because of increased stroke volume that may arise because of heart hypertrophy. Independent of acclimation, fH responded more to hypotension than to hypertension. This should imply that tegus, which have no pressure separation within the single heart ventricle, must have other protection mechanisms against pulmonary hypertension or oedema, presumably through lymphatic drainage and/or vagal vasoconstriction of pulmonary artery. Such a predominant fH reflex response to hypotension, previously observed in anurans, crocodilians and mammals, may be a common feature of tetrapods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.129130 | DOI Listing |
Circ Genom Precis Med
January 2025
Clalit Research Institute, Clalit Health Services, Ramat Gan, Israel (R.G., O.I., S.B.-S.).
Sci Rep
January 2025
Institute of Technology and Life Sciences-National Research Institute, Falenty, 3 Hrabska Avenue, 05-090, Raszyn, Poland.
Plant growth-promoting bacteria (PGPB) are considered an effective eco-friendly biostimulator. However, relatively few studies have examined how PGPB affect the native bacterial community of major crops. Thus, this study investigates the impact of a PGPB consortium, comprising Pseudomonas sp.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
Soil salinization poses a significant challenge to global agriculture, particularly in arid and semi-arid regions like Xinjiang. , a halophytic plant adapted to saline-alkaline conditions, harbors endophytic microorganisms with potential plant growth-promoting properties. In this study, 177 endophytic bacterial strains were isolated from , and 11 key strains were identified through functional screening based on salt tolerance, nutrient solubilization, and growth-promoting traits.
View Article and Find Full Text PDFMicroorganisms
January 2025
University of Chinese Academy of Sciences, Beijing 101408, China.
The seasonal variations that occur in the gut microbiota of healthy adult rhesus monkeys kept in outdoor groups under conventional rearing patterns and how these variations are affected by environmental variables are relatively poorly understood. In this study, we collected 120 fecal samples from 30 adult male rhesus monkeys kept in outdoor groups across four seasons and recorded the temperature and humidity of the housing facilities, as well as the proportions of fruit and vegetables in their diet. A 16S rRNA sequencing analysis showed that the alpha diversity of the gut microbiota of the rhesus monkeys was higher in winter and spring than in summer and autumn.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
Cocaine use disorder remains a major global health concern, with growing evidence that the gut microbiome modulates drug-related behaviors. This study examines the microbiome's role in cocaine-induced psychomotor activation and context-dependent reward responses using germ-free (GF) and antibiotic-treated (ABX) models. In GF mice, the absence of a microbiome blunted cocaine-induced psychomotor activation ( = 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!