AI Article Synopsis

Article Abstract

Objective: To examine whether exposure to curve versus sharp contours in the built healthcare setting produces systematic and identifiable patterns of amygdala activation and behavioral response in healthy adults.

Background: Recent studies in cognitive neuroscience suggest that humans prefer objects with a curved contour compared with objects that have pointed features and a sharp-angled contour. An implicit perception of threat represented by sharp objects, in humans, was hypothesized to explain this bias.

Method: The study adopted a within-subject experimental design, where 36 subjects (representing three age-groups and both sexes) were exposed to a randomized order of 312 real-life images (objects, interiors, exteriors, landscape, and a set of control images). Amygdala activation was simultaneously captured using functional magnetic resonance imaging technology. Subjects' preference (like/dislike) data were also collected while in the scanner. Data were collected in 2013.

Results: In case of images depicting landscape and healthcare objects, brain scans show significant higher amygdala activation associated with sharp contours. However, in relation to images depicting hospital interiors and exterior envelops, brain scans show significant higher amygdala activation associated with curve contours. These activations pertain to exposure during the precognitive stages of the subjects' perception.

Conclusion: Hospital forms do have systematic impact on fear response during precognitive stages of human perception. Whether this first impression colors the subsequent experience of an actual patient with real illness or injury is unknown.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1937586715624210DOI Listing

Publication Analysis

Top Keywords

amygdala activation
16
sharp contours
8
data collected
8
images depicting
8
brain scans
8
scans higher
8
higher amygdala
8
activation associated
8
precognitive stages
8
objects
5

Similar Publications

Central amygdala NPBWR1 neurons facilitate social novelty seeking and new social interactions.

Sci Adv

January 2025

International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan.

The formation of new social interactions is vital for social animals, but the underlying neural mechanisms remain poorly understood. We identified CeA neurons, a population in central amygdala expressing neuropeptide B/W receptor-1 (NPBWR1), that play a critical role in these interactions. CeA neurons were activated during encounters with unfamiliar, but not with familiar, mice.

View Article and Find Full Text PDF

Temporal lobe epilepsy with isolated amygdala enlargement: anatomo-electro-clinical features and long-term outcome.

J Neurol

January 2025

Epilepsy Unit - Sleep Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.

Background: Temporal lobe epilepsy with isolated amygdala enlargement (TLE-AE) still lacks a definite characterization and controversies exist.

Methods: We conducted a retrospective study identifying brain MRI scans with isolated AE between 2015 and 2021. We collected clinical and paraclinical data of patients with TLE-AE and evaluated the outcome.

View Article and Find Full Text PDF

Distinct Behavioral Profiles and Neuronal Correlates of Heroin Vulnerability Versus Resiliency in a Multi-Symptomatic Model of Heroin Use Disorder in Rats.

Am J Psychiatry

January 2025

Department of Neuroscience, Medical University of South Carolina, Charleston (Kuhn, Crow, Walterhouse, Chalhoub, Dereschewitz, Roberts, Kalivas); School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy (Cannella, Lunerti, Ciccocioppo); Interdisciplinary Ph.D. Program in Biostatistics (Gupta) and Department of Biomedical Informatics (Gupta, Allen, Chung), and Pelotonia Institute for Immuno-Oncology, James Comprehensive Cancer Center, Ohio State University, Columbus (Gupta, Allen, Chung); Department of Internal Medicine, Wake Forest University, Winston-Salem, NC (Cockerham, Beeson, Solberg Woods); Department of Psychology, Jacksonville State University, Jacksonville, AL (Nall); Institute for Genomic Medicine, University of California San Diego, La Jolla (Palmer); School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland (Hardiman).

Objective: The behavioral and diagnostic heterogeneity within the opioid use disorder (OUD) diagnosis is not readily captured in current animal models, limiting the translational relevance of the mechanistic research that is conducted in experimental animals. The authors hypothesized that a nonlinear clustering of OUD-like behavioral traits would capture population heterogeneity and yield subpopulations of OUD vulnerable rats with distinct behavioral and neurocircuit profiles.

Methods: Over 900 male and female heterogeneous stock rats, a line capturing genetic and behavioral heterogeneity present in humans, were assessed for several measures of heroin use and rewarded and non-rewarded seeking behaviors.

View Article and Find Full Text PDF

Anxiety disorder, a prevalent mental health issue, is one of the leading causes of disability worldwide. Damage to the blood-brain barrier (BBB) is implicated in anxiety, but its regulatory mechanisms remain unclear. Herein, we show that adrenomedullin 2 (ADM2), a novel angiogenic growth factor, alleviates autistic and anxiety-like behaviors in mice.

View Article and Find Full Text PDF

Overlapping and differential neuropharmacological mechanisms of stimulants and nonstimulants for attention-deficit/hyperactivity disorder: a comparative neuroimaging analysis.

Psychol Med

January 2025

Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.

Background: Psychostimulants and nonstimulants have partially overlapping pharmacological targets on attention-deficit/hyperactivity disorder (ADHD), but whether their neuroimaging underpinnings differ is elusive. We aimed to identify overlapping and medication-specific brain functional mechanisms of psychostimulants and nonstimulants on ADHD.

Methods: After a systematic literature search and database construction, the imputed maps of separate and pooled neuropharmacological mechanisms were meta-analyzed by Seed-based Mapping toolbox, followed by large-scale network analysis to uncover potential coactivation patterns and meta-regression analysis to examine the modulatory effects of age and sex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!