Involvement of a low-lying Rydberg state in the ultrafast relaxation dynamics of ethylene.

J Chem Phys

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

Published: January 2016

We present a measurement of the time-resolved photoelectron kinetic energy spectrum of ethylene using 156 nm and 260 nm laser pulses. The 156 nm pulse first excites ethylene to the (1)B1u (ππ(∗)) electronic state where 260 nm light photoionizes the system to probe the relaxation dynamics with sub-30 fs resolution. Recent ab initio calculations by Mori et al. [J. Phys. Chem. A 116, 2808-2818 (2012)] have predicted an ultrafast population transfer from the initially excited state to a low-lying Rydberg state during the relaxation of photoexcited ethylene. The measured photoelectron kinetic energy spectrum reveals wave packet motion on the valence state and shows indications that the low-lying π3s Rydberg state is indeed transiently populated via internal conversion following excitation to the ππ(∗) state, supporting the theoretical predictions.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4939220DOI Listing

Publication Analysis

Top Keywords

rydberg state
12
low-lying rydberg
8
relaxation dynamics
8
photoelectron kinetic
8
kinetic energy
8
energy spectrum
8
state
7
involvement low-lying
4
state ultrafast
4
ultrafast relaxation
4

Similar Publications

Approaching the standard quantum limit of a Rydberg-atom microwave electrometer.

Sci Adv

December 2024

Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou 510006, China.

The development of a microwave electrometer with inherent uncertainty approaching its ultimate limit carries both fundamental and technological significance. However, because of the thermal motion of atoms, the state-of-art Rydberg electrometer falls considerably short of the standard quantum limit by about three orders of magnitude. Here, we use an optically thin medium with approximately 5.

View Article and Find Full Text PDF

Symmetry Breaking in the Lowest-Lying Excited-State of CCl: Valence Shell Spectroscopy in the 5.0-10.8 eV Photon Energy Range.

Molecules

November 2024

Atomic and Molecular Collisions Laboratory, CEFITEC-Centre of Physics and Technological Research, Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.

We report absolute high-resolution vacuum ultraviolet (VUV) photoabsorption cross-sections of carbon tetrachloride (CCl) in the photon energy range 5.0-10.8 eV (248-115 nm).

View Article and Find Full Text PDF

Electrokinetic Manipulations Combined With Direct and Ambient Ionization Mass Spectrometry.

Mass Spectrom Rev

December 2024

Department of Chemistry and Chemical Biology, Indiana University, Indianapolis, Indiana, USA.

Mass spectrometry (MS) is a powerful analytical technique that typically involves sample preparation and online analytical separation before MS detection. Traditional methods often face bottlenecks in sample preparation and analytical separation, despite the rapid detection capabilities of MS. This review explores the integration of electrokinetic manipulations directly with the ionization step to enhance MS performance, focusing on methods that eliminate or simplify sample preparation and separation processes.

View Article and Find Full Text PDF

In the zoo of emergent symmetries in quantum many-body physics, the previously unrealized emergent spacetime supersymmetry (SUSY) is particularly intriguing. Although it was known that spacetime SUSY could emerge at the (1+1)d tricritical Ising transition, an experimental realization is still absent. In this Letter, we propose to realize emergent spacetime SUSY using reconfigurable Rydberg atom arrays featuring two distinct sets of Rydberg excitations, tailored for implementation on dual-species platforms.

View Article and Find Full Text PDF

In molecular beam scattering experiments, an important technique for measuring product energy and angular distributions is velocity map imaging following photoionization of one or more scattered species. For studies with cold molecular beams, the ultimate resolution of such a study is often limited by the product detection process. When state-selective ionization detection is used, excess energy from the ionization step can transfer to kinetic energy in the target molecular ion-electron pair, resulting in measurable cation recoil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!