Deficiency of Starch Synthase IIIa and IVb Alters Starch Granule Morphology from Polyhedral to Spherical in Rice Endosperm.

Plant Physiol

Department of Biological Production, Akita Prefectural University, Akita City, Akita 010-0195, Japan (Y.T., N.C., Y.N., N.F.);Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan (Y.K.);Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan (R.M.);Department of General Education, Yamaguchi Prefectural University, Yamaguchi 753-8502, Japan (M.O.);Plant Genetic Resources, Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan (M.F., T.K.);RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan (Y.O., M.K., K.S., K.T., M.S.);Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (K.S.); andDepartment of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011-1120 (Y.A., J.-L.J.)

Published: March 2016

Starch granule morphology differs markedly among plant species. However, the mechanisms controlling starch granule morphology have not been elucidated. Rice (Oryza sativa) endosperm produces characteristic compound-type granules containing dozens of polyhedral starch granules within an amyloplast. Some other cereal species produce simple-type granules, in which only one starch granule is present per amyloplast. A double mutant rice deficient in the starch synthase (SS) genes SSIIIa and SSIVb (ss3a ss4b) produced spherical starch granules, whereas the parental single mutants produced polyhedral starch granules similar to the wild type. The ss3a ss4b amyloplasts contained compound-type starch granules during early developmental stages, and spherical granules were separated from each other during subsequent amyloplast development and seed dehydration. Analysis of glucan chain length distribution identified overlapping roles for SSIIIa and SSIVb in amylopectin chain synthesis, with a degree of polymerization of 42 or greater. Confocal fluorescence microscopy and immunoelectron microscopy of wild-type developing rice seeds revealed that the majority of SSIVb was localized between starch granules. Therefore, we propose that SSIIIa and SSIVb have crucial roles in determining starch granule morphology and in maintaining the amyloplast envelope structure. We present a model of spherical starch granule production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4775109PMC
http://dx.doi.org/10.1104/pp.15.01232DOI Listing

Publication Analysis

Top Keywords

starch granule
24
starch granules
20
granule morphology
16
starch
12
ssiiia ssivb
12
starch synthase
8
granules
8
polyhedral starch
8
ss3a ss4b
8
spherical starch
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!