The marine foodborne enteropathogen Vibrio parahaemolyticus has four putative catalase genes. The functions of two katE-homologous genes, katE1 (VPA1418) and katE2 (VPA0305), in the growth of this bacterium were examined using gene deletion mutants with or without complementary genes. The growth of the mutant strains in static or shaken cultures in a rich medium at 37°C or at low temperatures (12 and 4°C), with or without competition from Escherichia coli, did not differ from that of the parent strain. When 175 μM extrinsic H2O2 was added to the culture medium, bacterial growth of the ΔkatE1 strain was delayed and growth of the ΔkatE1 ΔkatE2 and ΔkatE1 ΔahpC1 double mutant strains was completely inhibited at 37°C for 8 h. The sensitivity of the ΔkatE1 strain to the inhibition of growth by H2O2 was higher at low incubation temperatures (12 and 22°C) than at 37°C. The determined gene expression of these catalase and ahpC genes revealed that katE1 was highly expressed in the wild-type strain at 22°C under H2O2 stress, while the katE2 and ahpC genes may play an alternate or compensatory role in the ΔkatE1 strain. This study demonstrated that katE1 encodes the chief functional catalase for detoxifying extrinsic H2O2 during logarithmic growth and that the function of these genes was influenced by incubation temperature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4784039 | PMC |
http://dx.doi.org/10.1128/AEM.02547-15 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!