As one of most common synthetic phenolic antioxidants, tertiary butylhydroquinone (TBHQ) has received increasing attention due to the potential risk for liver damage and carcinogenesis. Herein, a simple and rapid fluorescent switchable methodology was developed for highly selective and sensitive determination of TBHQ by utilizing the competitive interaction between the photoinduced electron transfer (PET) effect of carbon dots (CDs)/Fe(III) ions and the complexation reaction of TBHQ/Fe(III) ions. This novel fluorescent switchable sensing platform allows determining TBHQ in a wider range from 0.5 to 80 μg mL(-1) with a low detection limit of 0.01 μg mL(-1). Furthermore, high specificity and good accuracy with recoveries ranging from 94.29 to 105.82% in spiked edible oil samples are obtained with the present method, confirming its applicability for the trace detection of TBHQ in a complex food matrix. Thus, the present method provides a novel and effective fluorescent approach for rapid and specific screening of TBHQ in common products, which is beneficial for monitoring and reducing the risk of TBHQ overuse during food storage.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.5b05340DOI Listing

Publication Analysis

Top Keywords

tertiary butylhydroquinone
8
fluorescent switchable
8
μg ml-1
8
tbhq
6
highly sensitive
4
sensitive selective
4
selective determination
4
determination tertiary
4
butylhydroquinone edible
4
edible oils
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!