Purpose: Magnetic particle imaging (MPI) is a new imaging technology that directly detects superparamagnetic iron oxide nanoparticles. The technique has potential medical applications in angiography, cell tracking, and cancer detection. In this paper, the authors explore how nanoparticle relaxation affects image resolution. Historically, researchers have analyzed nanoparticle behavior by studying the time constant of the nanoparticle physical rotation. In contrast, in this paper, the authors focus instead on how the time constant of nanoparticle rotation affects the final image resolution, and this reveals nonobvious conclusions for tailoring MPI imaging parameters for optimal spatial resolution.

Methods: The authors first extend x-space systems theory to include nanoparticle relaxation. The authors then measure the spatial resolution and relative signal levels in an MPI relaxometer and a 3D MPI imager at multiple drive field amplitudes and frequencies. Finally, these image measurements are used to estimate relaxation times and nanoparticle phase lags.

Results: The authors demonstrate that spatial resolution, as measured by full-width at half-maximum, improves at lower drive field amplitudes. The authors further determine that relaxation in MPI can be approximated as a frequency-independent phase lag. These results enable the authors to accurately predict MPI resolution and sensitivity across a wide range of drive field amplitudes and frequencies.

Conclusions: To balance resolution, signal-to-noise ratio, specific absorption rate, and magnetostimulation requirements, the drive field can be a low amplitude and high frequency. Continued research into how the MPI drive field affects relaxation and its adverse effects will be crucial for developing new nanoparticles tailored to the unique physics of MPI. Moreover, this theory informs researchers how to design scanning sequences to minimize relaxation-induced blurring for better spatial resolution or to exploit relaxation-induced blurring for MPI with molecular contrast.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698123PMC
http://dx.doi.org/10.1118/1.4938097DOI Listing

Publication Analysis

Top Keywords

drive field
24
image resolution
12
spatial resolution
12
field amplitudes
12
mpi
9
resolution
8
magnetic particle
8
particle imaging
8
mpi imaging
8
paper authors
8

Similar Publications

A few decades ago, the technological boom revolutionized access to information, ushering in a new era of research possibilities. Electrochemical devices have recently emerged as a key scientific advancement utilizing electrochemistry principles to detect various chemical species. These versatile electrodes find applications in diverse fields, such as healthcare diagnostics and environmental monitoring.

View Article and Find Full Text PDF

The marginal wells in low-permeability oil fields are characterized by small storage size, scattered distribution, intermittent production, etc. The construction of large-scale gathering pipelines has large investment. So the current production mode is featured by single well tank oil storage, oil tank truck transportation and manual tank truck scheduling.

View Article and Find Full Text PDF

A comprehensive study of quantum arithmetic circuits.

Philos Trans A Math Phys Eng Sci

January 2025

College of Computing and Data Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

In recent decades, the field of quantum computing has experienced remarkable progress. This progress is marked by the superior performance of many quantum algorithms compared with their classical counterparts, with Shor's algorithm serving as a prominent illustration. Quantum arithmetic circuits, which are the fundamental building blocks in numerous quantum algorithms, have attracted much attention.

View Article and Find Full Text PDF

Type-II multiferroicity from non-collinear spin order is recently explored in the van der Waals material NiI. Despite the importance for improper ferroelectricity, the microscopic mechanism of the helimagnetic order remains poorly understood. Here, the magneto-structural phases of NiI are investigated using resonant magnetic X-ray scattering (RXS) and X-ray diffraction.

View Article and Find Full Text PDF

Targeting protein-ligand neosurfaces with a generalizable deep learning tool.

Nature

January 2025

Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland.

Molecular recognition events between proteins drive biological processes in living systems. However, higher levels of mechanistic regulation have emerged, in which protein-protein interactions are conditioned to small molecules. Despite recent advances, computational tools for the design of new chemically induced protein interactions have remained a challenging task for the field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!