Population of 224 realistic human subject-based computational breast phantoms.

Med Phys

Department of Radiology and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Electrical and Computer Engineering and Biomedical Engineering and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705.

Published: January 2016

AI Article Synopsis

  • The study aims to create a comprehensive database of realistic 3D virtual breast phantoms using breast computed tomography (bCT) data.
  • A sophisticated tissue classification and segmentation algorithm processed over 230 bCT datasets, leading to the creation of 224 detailed virtual breast models that accurately reflect human breast variability.
  • The development of these phantoms holds significant potential for enhancing imaging research, allowing for the simulation of realistic mammograms and improving our understanding of breast tissue characteristics.

Article Abstract

Purpose: To create a database of highly realistic and anatomically variable 3D virtual breast phantoms based on dedicated breast computed tomography (bCT) data.

Methods: A tissue classification and segmentation algorithm was used to create realistic and detailed 3D computational breast phantoms based on 230 + dedicated bCT datasets from normal human subjects. The breast volume was identified using a coarse three-class fuzzy C-means segmentation algorithm which accounted for and removed motion blur at the breast periphery. Noise in the bCT data was reduced through application of a postreconstruction 3D bilateral filter. A 3D adipose nonuniformity (bias field) correction was then applied followed by glandular segmentation using a 3D bias-corrected fuzzy C-means algorithm. Multiple tissue classes were defined including skin, adipose, and several fractional glandular densities. Following segmentation, a skin mask was produced which preserved the interdigitated skin, adipose, and glandular boundaries of the skin interior. Finally, surface modeling was used to produce digital phantoms with methods complementary to the XCAT suite of digital human phantoms.

Results: After rejecting some datasets due to artifacts, 224 virtual breast phantoms were created which emulate the complex breast parenchyma of actual human subjects. The volume breast density (with skin) ranged from 5.5% to 66.3% with a mean value of 25.3% ± 13.2%. Breast volumes ranged from 25.0 to 2099.6 ml with a mean value of 716.3 ± 386.5 ml. Three breast phantoms were selected for imaging with digital compression (using finite element modeling) and simple ray-tracing, and the results show promise in their potential to produce realistic simulated mammograms.

Conclusions: This work provides a new population of 224 breast phantoms based on in vivo bCT data for imaging research. Compared to previous studies based on only a few prototype cases, this dataset provides a rich source of new cases spanning a wide range of breast types, volumes, densities, and parenchymal patterns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684566PMC
http://dx.doi.org/10.1118/1.4937597DOI Listing

Publication Analysis

Top Keywords

breast phantoms
24
breast
13
phantoms based
12
population 224
8
computational breast
8
virtual breast
8
segmentation algorithm
8
human subjects
8
fuzzy c-means
8
bct data
8

Similar Publications

Breast cancer is the most commonly diagnosed neoplasm and one of the most widespread cancers among women. The research advanced the Mf-EIT hardware through analogue discovery, component assessment, hardware integration, software creation, and data reconstruction utilizing Gauss-Newton and GREIT approaches. The breast cancer phantom consisted of a gelatin and sodium chloride solution.

View Article and Find Full Text PDF

Examining the influence of digital phantom models in virtual imaging trials for tomographic breast imaging.

J Med Imaging (Bellingham)

January 2025

University of Houston, Department of Biomedical Engineering, Houston, Texas, United States.

Purpose: Digital phantoms are one of the key components of virtual imaging trials (VITs) that aim to assess and optimize new medical imaging systems and algorithms. However, these phantoms vary in their voxel resolution, appearance, and structural details. We investigate whether and how variations between digital phantoms influence system optimization with digital breast tomosynthesis (DBT) as a chosen modality.

View Article and Find Full Text PDF

Objectives: We investigated image quality and standardized uptake values (SUVs) for different lesion sizes using clinical data generated by F-FDG-prone breast silicon photomultiplier (SiPM)-based positron emission tomography/computed tomography (PET/CT).

Methods: We evaluated the effect of point-spread function (PSF) modeling and Gaussian filtering (Gau) and determined the optimal reconstruction conditions. We compared the signal-to-noise ratio (SNR), contrast, %coefficient of variation (%CV), SUV, and Likert scale score between ordered-subset expectation maximization (OSEM) time-of-flight (TOF) and OSEM+TOF+PSF in phantom and clinical studies.

View Article and Find Full Text PDF

Background: This study investigates a multi-angle acquisition method aimed at improving image quality in organ-targeted PET detectors with planar detector heads. Organ-targeted PET technologies have emerged to address limitations of conventional whole-body PET/CT systems, such as restricted axial field-of-view (AFOV), limited spatial resolution, and high radiation exposure associated with PET procedures. The AFOV in organ-targeted PET can be adjusted to the organ of interest, minimizing unwanted signals from other parts of the body, thus improving signal collection efficiency and reducing the dose of administered radiotracer.

View Article and Find Full Text PDF

This study presented a novel approach for the precise ablation of breast tumors using focused ultrasound (FUS), leveraging a physics-informed neural network (PINN) integrated with a realistic breast model. FUS has shown significant promise in treating breast tumors by effectively targeting and ablating cancerous tissue. This technique employs concentrated ultrasonic waves to generate intense heat, effectively destroying cancerous tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!