Due to their self-renewal and tumorigenic properties, tumor-initiating cells (TICs) have been hypothesized to be important targets for colorectal cancer (CRC). However the study of TICs is hampered by the fact that the identification and culturing of TICs is still a subject of extensive debate. Floating three-dimensional spheroid cultures (SC) that grow in serum-free medium supplemented with growth factors are supposed to be enriched in TICs. We generated SC from fresh clinical tumor specimens and compared them to SC isolated from CRC cell-lines as well as to adherent differentiated counterparts. Patient-derived SC display self-renewal capacity and can induce serial transplantable tumors in immuno-deficient mice, which phenotypically resemble the tumor of origin. In addition, the original tumor tissue and established SC retain several similar CRC-relevant mutations. Primary SC express key stemness proteins such as SOX2, OCT4, NANOG and LGR5 and importantly show increased chemoresistance ability compared to their adherent differentiated counterparts and to cell line-derived SC. Strikingly, cells derived from spheroid or adherent differentiating culture conditions displayed similar self-renewal capacity and equally formed tumors in immune-deficient mice, suggesting that self-renewal and tumor-initiation capacity of TICs is not restricted to phenotypically immature spheroid cells, which we describe to be highly plastic and able to reacquire stem-cell traits even after long differentiation processes. Finally, we identified two genes among a sphere gene expression signature that predict disease relapse in CRC patients. Here we propose that SC derived from fresh patient tumor tissue present interesting phenotypic features that may have clinical relevance for chemoresistance and disease relapse and therefore represent a valuable tool to test for new CRC-therapies that overcome drug resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4706382 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146052 | PLOS |
PLoS One
January 2025
Phantomics, Inc., Seoul, South Korea.
Aims: T1 mapping on cardiac magnetic resonance (CMR) imaging is useful for diagnosis and prognostication in patients with light-chain cardiac amyloidosis (AL-CA). We conducted this study to evaluate the performance of T1 mapping parameters, derived from artificial intelligence (AI)-automated segmentation, for detection of cardiac amyloidosis (CA) in patients with left ventricular hypertrophy (LVH) and their prognostic values in patients with AL-CA.
Methods And Results: A total of 300 consecutive patients who underwent CMR for differential diagnosis of LVH were analyzed.
Mol Biol Rep
January 2025
Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco.
Background: Male infertility (MI) is a polygenic condition mainly induced by spermatogenic failure/arrest or systemic disease with a large clinical spectrum. Lately, genetic sequencing allowed the identification of several variants implicated in both aforesaid situations.
Methods And Results: In this case study, we performed whole exome sequencing (WES) on the genomic DNA of a 37-year-old Moroccan man with Non-Obstructive Azoospermia.
Cureus
December 2024
Biomedical Sciences, University of Chicago, Chicago, USA.
Pediatric-type follicular lymphoma (PTFL) is an extremely rare B-cell lymphoma that primarily affects children and young adults, typically in individuals under 25 years old, with a median age of 15 years. Here, we report a rare case of PTFL in a 27-year-old adult male who presented with a slow-growing mass near his left ear. Initial CT scans of the neck revealed two oval-shaped, smooth, well-defined, homogeneously enhancing soft tissue density lesions in the superficial lobe of the left parotid gland.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Nanosafety Group, International Iberian Nanotechnology Laboratory Braga Portugal
In alignment with the global movement toward reducing animal testing, several reconstructed human epidermis (RHE) models have been created for conducting skin irritation tests. These models have undergone development, verification, validation, and integration into OECD TG 439. Our team has introduced a novel in-house RHE named GB-RHE, and we adhere to OECD TG 439 to pre-validate the model and test its potential employment for nanoparticle irritation studies.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand.
Background: Small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) are recognized for their therapeutic potential in immune modulation and tissue repair, especially in veterinary medicine. This study introduces an innovative sequential stimulation (IVES) technique, involving low-oxygen gas mixture preconditioning using in vitro fertilization gas (IVFG) and direct current electrical stimulation (ES20), to enhance the anti-inflammatory properties of sEVs from canine adipose-derived MSCs (cAD-MSCs). Initial steps involved isolation and comprehensive characterization of cAD-MSCs, including morphology, gene expression, and differentiation potentials, alongside validation of the electrical stimulation protocol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!