Spontaneous Coassembly of Biologically Active Nanoparticles via Affinity Binding of Heparin-Binding Proteins to Alginate-Sulfate.

Nano Lett

Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, ‡Regenerative Medicine and Stem Cell (RMSC) Research Center, and §The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.

Published: February 2016

Controlled delivery of heparin-binding (HB) proteins represents a challenge in regenerative medicine strategies. Here, we describe the features of novel nanoparticles (NPs), spontaneously coassembled due to affinity interactions between HB proteins and the semisynthetic anionic polysaccharide, alginate-sulfate. The NPs efficiently encapsulated and protected the proteins from proteolysis. Injection of a combination of NPs encapsulating multiple therapeutic growth factors promoted effective and long-term tissue repair in animal models of severe ischemia (murine model of hindlimb ischemia and acute myocardial infarction in rats). This simple yet efficient NP fabrication method is amenable for clinical use.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.5b03598DOI Listing

Publication Analysis

Top Keywords

heparin-binding proteins
8
spontaneous coassembly
4
coassembly biologically
4
biologically active
4
active nanoparticles
4
nanoparticles affinity
4
affinity binding
4
binding heparin-binding
4
proteins
4
proteins alginate-sulfate
4

Similar Publications

Proteomic Identification and Functional Analysis of Reveals Heparin-Binding Proteins.

J Trop Med

January 2025

National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Laboratory of Parasite and Vector Biology, Ministry of Public Health, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China.

Glycosaminoglycan (GAG) molecules on the surface of red blood cells play an important regulatory role in the invasion of merozoites of apicomplexan protozoa. Heparan sulfate, a type of GAG molecule, has been identified as an important receptor facilitating the invasion of red blood cells by these parasites. Proteins in the parasite that exhibit strong affinity for heparin may play a pivotal role in this invasion process.

View Article and Find Full Text PDF

The chitinase-like protein YKL-40 (CHI3L1) has been implicated in the pathophysiology of inflammation and cancer. Recent studies highlight the growing interest in targeting and blocking the activity of YKL-40 to treat cancer. Some of those targeting-strategies have been developed to directly block the heparin-affinity of YKL-40 with promising results.

View Article and Find Full Text PDF

Background: The aim of this study was to explore the value of heparin-binding protein (HBP) in the early recognition of sepsis coagulopathy (SIC) and the prognosis of sepsis patients.

Methods: A retrospective analysis was performed for 139 patients with sepsis admitted to the Intensive Care Unit (ICU) of Hefei Third People's Hospital from April 2022 through April 2024. The clinical baseline data, disease scores [sequential organ failure (SOFA) score, acute physiology and chronic health status (APACHE II) score, and SIC score], inflammatory markers [HBP, procalcitonin (PCT), and interleukin 6 (IL-6)], coagulation-related indexes [platelet count (PLT), prothrombin time (PT), prothrombin time international normalized ratio (PT-INR), activated partial thromboplastin time (APTT), fibrinogen (Fib), and D dimer (D-D)], and the survival time and 28-day prognosis of all patients were observed.

View Article and Find Full Text PDF

Objective: To evaluate the predictive value of plasma heparin-binding protein (HBP) combined with albumin (Alb) for predicting 28-day mortality in patients with sepsis.

Methods: The clinical data of patients with sepsis admitted to the emergency intensive care unit (EICU) of the People's Hospital of Shenzhen Baoan District from March 2020 to March 2024 were retrospectively analyzed. The study began at the time of the first diagnosis of sepsis upon EICU admission and ended upon patient death or at 28 days.

View Article and Find Full Text PDF

Background: () is one of the most common pathogens of community-acquired pneumonia (CAP) in children. Although pneumonia (MPP) is considered a self-limiting disease, severe MPP (SMPP) occurs in some cases. This study aims to analyze clinical features of MPP and to explore predictive indicators in the early stage of infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!