Current in vitro optical studies of microtubule dynamics tend to rely on fluorescent labeling of tubulin, with tracking accuracy thereby limited by the quantum yield of fluorophores and by photobleaching. Here, we demonstrate label-free tracking of microtubules with nanometer precision at kilohertz frame rates using interferometric scattering microscopy (iSCAT). With microtubules tethered to a glass substrate using low-density kinesin, we readily detect sequential 8 nm steps in the microtubule center of mass, characteristic of a single kinesin molecule moving a microtubule. iSCAT also permits dynamic changes in filament length to be measured with <5 nm precision. Using the arbitrarily long observation time enabled by label-free iSCAT imaging, we demonstrate continuous monitoring of microtubule disassembly over a 30 min period. The ability of iSCAT to track microtubules with nm precision together with its potential for label-free single protein detection and simultaneous single molecule fluorescence imaging represent a unique platform for novel approaches to studying microtubule dynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4806212 | PMC |
http://dx.doi.org/10.1016/j.bpj.2015.10.055 | DOI Listing |
J Biophotonics
January 2025
School of Optoelectronics, Zhejiang University, Hangzhou, China.
The article describes a technique for digital holographic reconstruction of complex amplitude fields in diffuse blood facies using laser polarization-interference phase scanning to isolate a single scattered component of the object field. This method serves as the basis for developing algorithms for Mueller-matrix reconstruction of linear and circular birefringence parameters in the polycrystalline architectonics of blood facies. Statistical (central moments of the 1st-4th orders) and multifractal analyses (fractal dimension spectra) are applied to study the optical anisotropy maps of polycrystalline networks during blood dehydration.
View Article and Find Full Text PDFSci Rep
December 2024
Pharmacy Department, Hospices Civils de Lyon, Hôpital E. Herriot, Plateforme FRIPHARM, 69437, Lyon, France.
Phage therapy uses viruses (phages) against antibiotic resistance. Tailoring treatments to specific patient strains requires stocks of various highly concentrated purified phages. It, therefore, faces challenges: titration duration and specificity to a phage/bacteria couple; purification affecting stability; and highly concentrated suspensions tending to aggregate.
View Article and Find Full Text PDFOptica
December 2024
Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK.
X-ray dark-field imaging highlights sample structures through contrast generated by sub-resolution features within the inspected volume. Quantifying dark-field signals generally involves multiple exposures for phase retrieval, separating contributions from scattering, refraction, and attenuation. Here, we introduce an approach for non-interferometric X-ray dark-field imaging that presents a single-parameter representation of the sample.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemistry and The Photonics Center, Boston University, Boston, Massachusetts 02215, United States.
Sensors (Basel)
November 2024
School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China.
The Fucheng-1 (FC-1) satellite has successfully transitioned from its initial operational phase and is now undergoing a detailed performance assessment for time-series deformation monitoring. This study evaluates the surface deformation monitoring capabilities of the newly launched FC-1 satellite using the interferometric synthetic aperture radar (InSAR) technique, particularly in urban applications. By analyzing the observation data from 20 FC-1 scenes and 20 Sentinel-1 scenes, deformation velocity maps of a university in Mianyang city were obtained using persistent scatterer interferometry (PSI) and distributed scatterer interferometry (DSI) techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!