Many proteins and peptides have an intrinsic capacity to sense and induce membrane curvature, and play crucial roles for organizing and remodeling cell membranes. However, the molecular driving forces behind these processes are not well understood. Here, we describe an approach to study curvature sensing by simulating the interactions of single molecules with a buckled lipid bilayer. We analyze three amphipathic antimicrobial peptides, a class of membrane-associated molecules that specifically target and destabilize bacterial membranes, and find qualitatively different sensing characteristics that would be difficult to resolve with other methods. Our findings provide evidence for direction-dependent curvature sensing mechanisms in amphipathic peptides and challenge existing theories of hydrophobic insertion. The buckling approach is generally applicable to a wide range of curvature-sensing molecules, and our results provide strong motivation to develop new experimental methods to track position and orientation of membrane proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4806213 | PMC |
http://dx.doi.org/10.1016/j.bpj.2015.11.3512 | DOI Listing |
Phys Rev Lett
December 2024
Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA and Quantum Materials and Sensing Institute, Northeastern University, Burlington, Massachusetts 01803, USA.
In contrast to the Dirac-cone materials in which the low-energy spectrum features a pseudospin-1/2 structure, Lieb and Dice lattices both host triply degenerate low-energy excitations. Here, we discuss moiré structures involving twisted bilayers of these lattices, which are shown to exhibit a tunable number of isolated flat bands near the Fermi level due to the bipartite nature of their structures. These flat bands remain isolated from the high-energy bands even in the presence of small higher-order terms and chiral-symmetry-breaking interlayer tunneling.
View Article and Find Full Text PDFSmall
December 2024
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
Soft actuators with multi-stimuli response have shown promising applications in soft intelligent robots. However, most soft actuators are limited by the unidirectional actuation and self-perception capabilities. Here, a bilayer self-sensing actuator with bidirectional actuation is proposed, which showed exceptional bidirectional actuation, self-sensing of temperature and moisture, and smart solar panel.
View Article and Find Full Text PDFPhys Rev E
November 2024
Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
We propose a reaction-diffusion system that converts topological information of an active nematic into chemical signals. We show that a curvature-activated reaction dipole is sufficient for creating a system that dynamically senses topology by producing a concentration field possessing local extrema coinciding with ±1/2 defects. The enabling term is analogous to polarization charge density seen in dielectric materials.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Physics and Electronic Engineering, Jining University, Qufu 273155, China.
Flexible sensing materials have become a hot topic due to their sensitive electrical response to external force or temperature and their promising applications in flexible wear and human-machine interaction. In this study, a PDMS/capillary GaInSn flexible sensing material with high force and thermal sensitivity was prepared utilizing liquid metal (LM, GaInSn), flexible silicone capillary, and polydimethylsiloxane (PDMS). The resistance () of the flexible sensing materials under the action of different forces and temperatures was recorded in real-time.
View Article and Find Full Text PDFACS Sens
December 2024
Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
Eyelid pressure is a crucial biomechanical parameter for ocular health and refractive status, yet measuring it poses challenges related to flexibility, sensitivity, and regional specificity. This study introduces a novel smart contact lens that incorporates kirigami designs and an iontronic capacitive sensing array to enhance flexibility and conformability. The unique structural composition of this device allows for precise and simultaneous monitoring of eyelid pressure in multiple regions with a high sensitivity and seamlessly fit across corneal curvatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!