Cholesterol-Enriched Domain Formation Induced by Viral-Encoded, Membrane-Active Amphipathic Peptide.

Biophys J

Biophysics Graduate Group, University of California, Davis, Davis, California; Department of Chemical Engineering & Materials Science, University of California, Davis, Davis, California; Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore; School of Materials Science and Engineering, Nanyang Technological University, Singapore; Department of Biomedical Engineering, University of California, Davis, Davis, California. Electronic address:

Published: January 2016

The α-helical (AH) domain of the hepatitis C virus nonstructural protein NS5A, anchored at the cytoplasmic leaflet of the endoplasmic reticulum, plays a role in viral replication. However, the peptides derived from this domain also exhibit remarkably broad-spectrum virocidal activity, raising questions about their modes of membrane association. Here, using giant lipid vesicles, we show that the AH peptide discriminates between membrane compositions. In cholesterol-containing membranes, peptide binding induces microdomain formation. By contrast, cholesterol-depleted membranes undergo global softening at elevated peptide concentrations. Furthermore, in mixed populations, the presence of ∼100 nm vesicles of viral dimensions suppresses these peptide-induced perturbations in giant unilamellar vesicles, suggesting size-dependent membrane association. These synergistic composition- and size-dependent interactions explain, in part, how the AH domain might on the one hand segregate molecules needed for viral assembly and on the other hand furnish peptides that exhibit broad-spectrum virocidal activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4806215PMC
http://dx.doi.org/10.1016/j.bpj.2015.11.032DOI Listing

Publication Analysis

Top Keywords

broad-spectrum virocidal
8
virocidal activity
8
membrane association
8
cholesterol-enriched domain
4
domain formation
4
formation induced
4
induced viral-encoded
4
viral-encoded membrane-active
4
membrane-active amphipathic
4
peptide
4

Similar Publications

Cholesterol-Enriched Domain Formation Induced by Viral-Encoded, Membrane-Active Amphipathic Peptide.

Biophys J

January 2016

Biophysics Graduate Group, University of California, Davis, Davis, California; Department of Chemical Engineering & Materials Science, University of California, Davis, Davis, California; Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore; School of Materials Science and Engineering, Nanyang Technological University, Singapore; Department of Biomedical Engineering, University of California, Davis, Davis, California. Electronic address:

The α-helical (AH) domain of the hepatitis C virus nonstructural protein NS5A, anchored at the cytoplasmic leaflet of the endoplasmic reticulum, plays a role in viral replication. However, the peptides derived from this domain also exhibit remarkably broad-spectrum virocidal activity, raising questions about their modes of membrane association. Here, using giant lipid vesicles, we show that the AH peptide discriminates between membrane compositions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!